Dynamic Scheduling of Ready Mixed Concrete Delivery Problem Using Delegate MAS

  • Shaza Hanif
  • Tom Holvoet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8473)


Delegate MAS is a bio-inspired coordination mechanism that is geared at large-scale and dynamic applications. It is used for coordination and control applications, such as decentralized management of traffic and logistics. While using Delegate MAS, agents behave selfishly and try to maximize their own utility. It is unclear that with such selfish behaviour, complex and constrained scheduling problem can also be solved. In these problems, coping with dynamism in stressful scenarios is very challenging. In this paper, we present our experience of using Delegate MAS for a constrained problem. As a case study, we use dynamic ready mixed concrete delivery problem. We characterized input scenarios of our case study into unique attributes. By empirical evaluation, we have found that using Delegate MAS as coordination mechanism results in consistent performance when scale and stress of the problem is increased.


Multiagent System Coordination Mechanism Dynamic Schedule Input Instance Interested Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asbach, L., Dorndorf, U., Pesch, E.: Analysis, modeling and solution of the concrete delivery problem. European Journal of Operational Research 193(3), 820–835 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Collette, Y., Siarry, P.: Multiobjective optimization: principles and case studies. Springer (2003)Google Scholar
  3. 3.
    Fischer, K., Müller, J.P., Pischel, M.: Cooperative transportation scheduling: an application domain for dai. Applied Artificial Intelligence 10(1), 1–34 (1996)CrossRefGoogle Scholar
  4. 4.
    Foukia, N.: IDReAM: Intrusion detection and response executed with agent mobility. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 227–239. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hanif, S., van Lon, R.R.S., Gui, N., Holvoet, T.: Delegate MAS for large scale and dynamic PDP: A case study. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 23–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Hoffman, K., Durbin, M.: The dance of the thirty ton trucks. Operations Research 56(1), 3–19 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Holvoet, T., Valckenaers, P.: Beliefs, desires and intentions through the environment. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1052–1054. ACM (2006)Google Scholar
  8. 8.
    Holvoet, T., Valckenaers, P.: Exploiting the environment for coordinating agent intentions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of delegate MAS. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2009, pp. 1–9. IEEE (2009)Google Scholar
  10. 10.
    Karuna, H., Valckenaers, P., Saint-Germain, B., Verstraete, P., Zamfirescu, C.B., Van Brussel, H.H.: Emergent forecasting using a stigmergy approach in manufacturing coordination and control. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 210–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    van Lon, R.R.S., Holvoet, T.: Rinsim: a simulator for collective adaptive systems in transportation and logistics. In: 2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 231–232. IEEE (2012)Google Scholar
  12. 12.
    Naso, D., Surico, M., Turchiano, B., Kaymak, U.: Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete. European Journal of Operational Research 177(3), 2069–2099 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Van Dyke Parunak, H., Brueckner, S.A., Weyns, D., Holvoet, T., Verstraete, P., Valckenaers, P.: E pluribus unum: Polyagent and delegate MAS architectures. In: Antunes, L., Paolucci, M., Norling, E. (eds.) MABS 2007. LNCS (LNAI), vol. 5003, pp. 36–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Van Dyke Parunak, H., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for coordination of unmanned vehicles. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 449–450. ACM (2002)Google Scholar
  15. 15.
    Weyns, D., Holvoet, T.: A reference architecture for situated multiagent systems. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 1–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Weyns, D., Holvoet, T., Helleboogh, A.: Anticipatory vehicle routing using delegate multi-agent systems. In: IEEE Intelligent Transportation Systems Conference, ITSC 2007, pp. 87–93. IEEE (2007)Google Scholar
  17. 17.
    Yan, S., Lin, H.C., Jiang, X.Y.: A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times. Engineering Optimization 44(4), 427–447 (2012)CrossRefGoogle Scholar
  18. 18.
    Yan, S., Lai, W., Chen, M.: Production scheduling and truck dispatching of ready mixed concrete. Transportation Research Part E: Logistics and Transportation Review 44(1), 164–179 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shaza Hanif
    • 1
  • Tom Holvoet
    • 1
  1. 1.Department of Computer ScienceKU LeuvenBelgium

Personalised recommendations