Advertisement

Certified Bitcoins

  • Giuseppe Ateniese
  • Antonio Faonio
  • Bernardo Magri
  • Breno de Medeiros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)

Abstract

Bitcoin is a peer-to-peer (p2p) electronic cash system that uses a distributed timestamp service to record transactions in a public ledger (called the Blockchain). A critical component of Bitcoin’s success is the decentralized nature of its architecture, which does not require or even support the establishment of trusted authorities. Yet the absence of certification creates obstacles to its wider acceptance in e-commerce and official uses. We propose a certification system for Bitcoin that offers: a) an opt-in guarantee to send and receive bitcoins only to/ from certified users; b) control of creation of bitcoins addresses (certified users) by trusted authorities. Our proposal may encourage the adoption of Bitcoin in different scenarios that require an officially recognized currency, such as tax payments—often an integral part of e-commerce transactions.

Keywords

Hash Function Signature Scheme Random Oracle Model Honest Party Elliptic Curve Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Secure multiparty computations on bitcoin. Cryptology ePrint Archive, Report 2013/784 (2013), http://eprint.iacr.org/
  3. 3.
    Ateniese, G., de Medeiros, B.: A provably secure nyberg-rueppel signature variant with applications. Cryptology ePrint Archive, Report 2004/093 (2004), http://eprint.iacr.org/
  4. 4.
    Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better how to make bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Brown, D.R.L.: The exact security of ecdsa. Technical report, Advances in Elliptic Curve Cryptography (2000)Google Scholar
  6. 6.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO, pp. 199–203. Plenum Press, New York (1982)Google Scholar
  7. 7.
    Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, IMC 2013, pp. 127–140. ACM, New York (2013)CrossRefGoogle Scholar
  9. 9.
    Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from bitcoin. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP 2013, pp. 397–411. IEEE Computer Society, Washington, DC (2013)CrossRefGoogle Scholar
  10. 10.
    Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the hash-and-sign paradigm. In: Proceedings of the 8th ACM Conference on Computer and Communications Security (ACM CCS), pp. 20–27 (2001)Google Scholar
  11. 11.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1, 2012 (2008)Google Scholar
  12. 12.
    Nyberg, K., Rueppel, R.: A new signature scheme based on the DSA giving message recovery. In: Proceedings of the First ACM Conference on Computer and Communications Security (ACM CCS 1993), pp. 58–61. ACM Press (1993)Google Scholar
  13. 13.
    Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin transaction graph. Future Internet 5(2), 237–250 (2013)CrossRefGoogle Scholar
  14. 14.
    Petersen, H., Horster, P.: Self-certified keys – concepts and applications. In: Proceedings of the Third Conference on Communications and Multimedia Security. Chapman & Hall (1997)Google Scholar
  15. 15.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Saeednia, S.: A note on girault’s self-certified model. Information Processing Letters 86(6), 323–327 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wired.com. Bitcoin bubble bursts as china cracks down on digital currency (December 2013), http://www.wired.com/wiredenterprise/2013/12/china_crackdown/
  19. 19.
    X9.62-2005, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA) (November 2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Giuseppe Ateniese
    • 1
    • 2
  • Antonio Faonio
    • 1
  • Bernardo Magri
    • 1
  • Breno de Medeiros
    • 3
  1. 1.Sapienza - University of RomeItaly
  2. 2.Johns Hopkins UniversityUSA
  3. 3.Google, Inc.USA

Personalised recommendations