A Linear Algebra Attack to Group-Ring-Based Key Exchange Protocols

  • M. Kreuzer
  • A. D. Myasnikov
  • A. Ushakov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)


In this paper we analyze the Habeeb-Kahrobaei-Koupparis-Shpilrain (HKKS) key exchange protocol which uses semidirect products of groups as a platform. We show that the particular instance of the protocol suggested in their paper can be broken via a simple linear algebra attack.


Group-based cryptography semidirect product group ring 

Subject Classifications

94A60 68W30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Habeeb, M., Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange using semidirect product of (semi)groups. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 475–486. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Kahrobaei, D., Koupparis, C., Shpilrain, V.: A CCA secure cryptosystem using matrices over group rings, http://www.sci.ccny.cuny.edu/~shpil/res.html (preprint)
  3. 3.
    Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange using matrices over group rings. Groups, Complexity, Cryptology 5, 97–115 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Miasnikov, A.G., Shpilrain, V., Ushakov, A.: Non-Commutative Cryptography and Complexity of Group-Theoretic Problems. Mathematical Surveys and Monographs. AMS (2011)Google Scholar
  5. 5.
    Myasnikov, A.D., Ushakov, A.: Quantum algorithm for discrete logarithm problem for matrices over finite group rings, http://eprint.iacr.org/2012/574 (preprint)
  6. 6.
    Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. JACM 27, 701–717 (1980)CrossRefMATHGoogle Scholar
  7. 7.
    Shpilrain, V.: Cryptanalysis of Stickel’s key exchange scheme. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 283–288. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Stickel, E.: A new method for exchanging secret keys. In: Proceedings of the Third International Conference on Information Technology and Applications (ICITA 2005). Contemporary Mathematics, vol. 2, pp. 426–430. IEEE Computer Society (2005)Google Scholar
  9. 9.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Kreuzer
    • 2
  • A. D. Myasnikov
    • 1
  • A. Ushakov
    • 1
  1. 1.Stevens Institute of TechnologyHobokenUSA
  2. 2.University of PassauGermany

Personalised recommendations