Faster Batch Verification of Standard ECDSA Signatures Using Summation Polynomials

  • Sabyasachi Karati
  • Abhijit Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)

Abstract

Several batch-verification algorithms for original ECDSA signatures are proposed for the first time in AfricaCrypt 2012. Two of these algorithms are based on the naive idea of taking square roots in the underlying fields, and the others perform symbolic manipulation to verify small batches of ECDSA signatures. In this paper, we use elliptic-curve summation polynomials to design a new ECDSA batch-verification algorithm which is theoretically and experimentally much faster than the symbolic algorithms of AfricaCrypt 2012. Our experiments on NIST prime and Koblitz curves demonstrate that our proposed algorithm increases the optimal batch size from seven to nine. We also mention how our algorithm can be adapted to Edwards curves.

Keywords

Elliptic Curve ECDSA Batch Verification Summation Polynomial Koblitz Curve Edwards Curve EdDSA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 454–473. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for η T pairing on 128-bit secure supersingular elliptic curves over characteristic two fields. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Lange, T.: Explicit-formulas database (2007), http://www.hyperelliptic.org/EFD/
  6. 6.
    Brown, W.S.: The subresultant PRS algorithm. ACM Transactions on Mathematical Software 4(3), 237–249 (1978)CrossRefMATHGoogle Scholar
  7. 7.
    Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2006)Google Scholar
  9. 9.
    Collins, G.E.: Subresultants and reduced polynomial remainder sequences. Journal of ACM 14(1), 128–142 (1967)CrossRefMATHGoogle Scholar
  10. 10.
    Edwards, H.M.: A normal form for elliptic curves. Bulletin of American Mathematical Society 44(3), 393–422 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Letters 34(12), 1219–1220 (1998)CrossRefGoogle Scholar
  12. 12.
    Johnson, D., Menezes, A.J., Vanstone, S.A.: The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal of Information Security 1(1), 36–63 (2001)CrossRefGoogle Scholar
  13. 13.
    Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.: Batch verification of ECDSA signatures. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Karati, S., Das, A., Roychowdhury, D.: Using randomizers for batch verification of ECDSA signatures, IACR Cryptology ePrint Archive (2012), http://eprint.iacr.org/2012/582
  15. 15.
    Montgomery, P.L.: Speeding up Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. Be improved? In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    NIST: Recommended elliptic curves for federal government use (1999), http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
  20. 20.
    PARI Group: PARI/GP Home (2003-2013), http://pari.math.u-bordeaux.fr/
  21. 21.
    Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic curves (2004), http://eprint.iacr.org/2004/031
  22. 22.
    Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves, Combinatorics and Optimization Research Report CORR 99-46, University of Waterloo (1999), http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.ps

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sabyasachi Karati
    • 1
  • Abhijit Das
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations