Distributed Smooth Projective Hashing and Its Application to Two-Server Password Authenticated Key Exchange

  • Franziskus Kiefer
  • Mark Manulis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)

Abstract

Smooth projective hash functions have been used as building block for various cryptographic applications, in particular for password-based authentication.

In this work we propose the extended concept of distributed smooth projective hash functions where the computation of the hash value is distributed across n parties and show how to instantiate the underlying approach for languages consisting of Cramer-Shoup ciphertexts.

As an application of distributed smooth projective hashing we build a new framework for the design of two-server password authenticated key exchange protocols, which we believe can help to “explain” the design of earlier two-server password authenticated key exchange protocols.

Keywords

Smooth Projective Hash Functions Two-Server PAKE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Conditionally Extractable Commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Pointcheval, D.: A Scalable Password-Based Group Key Exchange Protocol in the Standard Model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 332–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New Smooth Projective Hash Functions and One-Round Authenticated Key Exchange. Cryptology ePrint Archive, Report 2013/034 (2013), http://eprint.iacr.org/
  6. 6.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New Techniques for SPHFs and Efficient One-Round PAKE Protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Blazy, O., Pointcheval, D., Vergnaud, D.: Round-Optimal privacy-preserving protocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Brainard, J., Juels, A.: A new two-server approach for authentication with short secrets. In: USENIX 2003. SSYM 2003, vol. 12, p. 14. USENIX Association (2003)Google Scholar
  9. 9.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key Exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)CrossRefGoogle Scholar
  12. 12.
    Gentry, C., MacKenzie, P.D., Ramzan, Z.: A Method for Making Password-Based Key Exchange Resilient to Server Compromise. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authenticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 385–400. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Raimondo, M.D., Gennaro, R.: Provably secure threshold password-authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 507–523. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Szydlo, M., Kaliski, B.: Proofs for Two-Server Password Authentication. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Wu, T.: RFC 2945 - The SRP Authentication and Key Exchange System (September 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Franziskus Kiefer
    • 1
  • Mark Manulis
    • 1
  1. 1.Surrey Center for Cyber Security Department of ComputingUniversity of SurreyUK

Personalised recommendations