Advertisement

Simulated Field Maps: Toward Improved Susceptibility Artefact Correction in Interventional MRI

  • Martin Kochan
  • Pankaj Daga
  • Ninon Burgos
  • Mark White
  • M. Jorge Cardoso
  • Laura Mancini
  • Gavin P. Winston
  • Andrew W. McEvoy
  • John Thornton
  • Tarek Yousry
  • John S. Duncan
  • Danail Stoyanov
  • Sébastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8498)

Abstract

Intraoperative MRI is a powerful modality for acquiring structural and functional images of the brain to enable precise image-guided neurosurgery. In this paper, we propose a novel method for simulating main magnetic field inhomogeneity maps during intraoperative MRI-guided neurosurgery. Our method relies on an air-tissue segmentation of intraoperative patient specific data, which is used as an input to a subsequent field simulation step. The generated simulation can then be used to enhance the precision of image-guidance. We report results of our method on 12 patient datasets acquired during image-guided neurosurgery for anterior lobe resection for surgical management of focal temporal lobe epilepsy. We find a close agreement between the field inhomogeneity maps acquired as part of the imaging protocol and the simulated field inhomogeneity maps generated by the proposed method.

Keywords

image-guided neurosurgery interventional MRI inhomogeneity field map simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nimsky, C., Ganslandt, O., Cerny, S., Hastreiter, P., Greiner, G., Fahlbusch, R.: Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5), 1070–1080 (2000)CrossRefGoogle Scholar
  2. 2.
    Daga, P., Winston, G., Modat, M., White, M., Mancini, L., Cardoso, M.J., Symms, M., Stretton, J., McEvoy, A.W., Thornton, J., Micallef, C., Yousry, T., Hawkes, D.J., Duncan, J.S., Ourselin, S.: Accurate Localization of Optic Radiation During Neurosurgery in an Interventional MRI Suite. IEEE Transactions on Medical Imaging 31(4), 882–891 (2012)CrossRefGoogle Scholar
  3. 3.
    Clare, S., Evans, J., Jezzard, P.: Requirements for room temperature shimming of the human brain. Magn. Reson. Med. 55, 210–214 (2006)CrossRefGoogle Scholar
  4. 4.
    Jezzard, P., Balaban, R.S.: Correction for geometric distortion in echo planar images from b0 field variations. Magn. Reson. Med. 34, 65–73 (1995)CrossRefGoogle Scholar
  5. 5.
    Poynton, C., Jenkinson, M., Wells III, W.: Atlas-Based Improved Prediction of Magnetic Field Inhomogeneity for Distortion Correction of EPI Data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 951–959. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Jenkinson, M., Wilson, J.L., Jezzard, P.: Perturbation method for magnetic field calculations of nonconductive objects. Magnetic Resonance in Medicine 52(3), 471–477 (2004)CrossRefGoogle Scholar
  7. 7.
    Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R.: Image distortion correction in fMRI: A quantitative evaluation. Neuroimage 16(1), 217–240 (2002)CrossRefGoogle Scholar
  8. 8.
    Daga, P., Modat, M., Winston, G., White, M., Mancini, L., McEvoy, A.W., Thornton, J., Yousry, T., Duncan, J.S., Ourselin, S.: Susceptibility artefact correction by combining B0 field maps and non-rigid registration using graph cuts. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 86690B–86690B (2013)Google Scholar
  9. 9.
    Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin, S.: Improved Maximum a Posteriori Cortical Segmentation by Iterative Relaxation of Priors. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 441–449. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Burgos, N., et al.: Attenuation Correction Synthesis for Hybrid PET-MR Scanners. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 147–154. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Gruetter, R., Boesch, C.: Fast, noniterative shimming of spatially localized signals, In vivo analysis of the magnetic field along axes. Journal of Magnetic Resonance 96(2), 323–334 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Kochan
    • 1
  • Pankaj Daga
    • 1
  • Ninon Burgos
    • 1
  • Mark White
    • 2
  • M. Jorge Cardoso
    • 1
    • 3
  • Laura Mancini
    • 2
  • Gavin P. Winston
    • 4
  • Andrew W. McEvoy
    • 2
  • John Thornton
    • 2
  • Tarek Yousry
    • 2
  • John S. Duncan
    • 4
  • Danail Stoyanov
    • 1
  • Sébastien Ourselin
    • 1
    • 3
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.National Hospital for Neurology and NeurosurgeryUCLH NHS Foundation TrustLondonUK
  3. 3.Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
  4. 4.Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations