Articulated Statistical Shape Model-Based 2D-3D Reconstruction of a Hip Joint

  • S. Balestra
  • S. Schumann
  • J. Heverhagen
  • L. Nolte
  • G. Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8498)


In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.


2D-3D Reconstruction articulated statistical shape model Femoroacetabular Impingement (FAI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganz, R., Parvizi, J., Beck, M., Leunig, M., Notzli, H., Siebenrock, A.: Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin. Orthop. Relat. Res. 417, 112–120 (2003)Google Scholar
  2. 2.
    Laborie, L.B., Lehmann, T.G., Engester, I., Eastwood, D.M., Engester, L.B., Rosendahl, K.: Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260(2), 494–502 (2011)CrossRefGoogle Scholar
  3. 3.
    Zheng, G.: Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph. Medical Physics 37(4), 1424–1439 (2010)CrossRefGoogle Scholar
  4. 4.
    Fleute, M., Lavallée, S.: Nonrigid 3-D/2-D registration of images using statistical models. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 138–147. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Lamecker, H., Wenckebach, T.H., Hege, H.-C.: Atlas-based 3D-shape reconstruction from X-ray iamges. In: Proceedings of ICPR 2006, pp. 371–374. IEEE Computer Society (2006)Google Scholar
  6. 6.
    Sadowsky, O., Chintalapani, G., Taylor, R.H.: Deformable 2D-3D registration of the pelvis with a limited field of view, suing shape statistics. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 519–526. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Zheng, G., Gollmer, S., Schumann, S., et al.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Medical Image Analysis 13(6), 883–899 (2009)CrossRefGoogle Scholar
  8. 8.
    Baka, N., Kaptein, B.L., de Bruijne, M., et al.: 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical Image Analysis 15, 840–850 (2011)CrossRefGoogle Scholar
  9. 9.
    Zheng, G.: 3D volumetric intensity reconstruction from 2D X-ray images using partial least squares regression. In: Proceedings of ISBI, pp. 1268–1271 (2013)Google Scholar
  10. 10.
    Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Articulated spine models for 3-D reconstruction from partial radiographic data. IEEE Transactions on Biomedical Engineering 55(11), 2565–2574 (2008)CrossRefGoogle Scholar
  11. 11.
    Harmouche, R., Cheriet, F., Labelle, H., Dansereau, J.: 3D registration of MR and X-ray spine images using an articulated model. Computerized Medical Imaging and Graphics 36, 410–418 (2012)CrossRefGoogle Scholar
  12. 12.
    Khallaghi, S., Mousavi, P., Gong, R.H., Gill, S., Boisvert, J., Fichtinger, G., Pichora, D., Borschneck, D., Abolmaesumi, P.: Registartion of a statistical shape model of the lumbar spine to 3D ultrasound images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 68–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Klinder, T., Wolz, R., Lorenz, C., Franz, A., Ostermann, J.: Spine segmentation using articulated shape models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 227–234. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and condictional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Kainmueller, D., Lamecker, H., Zachow, S., Hege, H.-C.: An articulated statistical shape model for accurate hip joint segmentation. In: Proceedings of IEEE EMBS 2009, Part II, pp. 6345–6351 (2009)Google Scholar
  16. 16.
    Heitz, G., Rohlfing, T., Maurer Jr., C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 1411–1421 (2005)Google Scholar
  17. 17.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(suppl. 1), S61–S72 (2009)Google Scholar
  18. 18.
    Schumann, S., Liu, L., Tannast, M., Bergmann, M., Nolte, L.-P., Zheng, G.: An integrated system for 3D hip joint reconstruction from 2D X-rays: an preliminary validation study. Annals of Biomedical Engineering 41(10), 2077–2087 (2013)CrossRefGoogle Scholar
  19. 19.
    Banerjee, P., Mclean, C.R.: Femoroacetabular impingement: a review of diagnosis and management. Curr. Rev. Musculoskelet Med. 4(1), 23–32 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Balestra
    • 1
  • S. Schumann
    • 1
  • J. Heverhagen
    • 2
  • L. Nolte
    • 1
  • G. Zheng
    • 1
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernSwitzerland
  2. 2.Department of RadiologyUniversity of BernSwitzerland

Personalised recommendations