Advertisement

A Case Study of Energy Aware Scheduling on SuperMUC

  • Axel Auweter
  • Arndt Bode
  • Matthias Brehm
  • Luigi Brochard
  • Nicolay Hammer
  • Herbert Huber
  • Raj Panda
  • Francois Thomas
  • Torsten Wilde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8488)

Abstract

In this paper, we analyze the functionalities for energy aware scheduling of the IBM LoadLeveler resource management system on SuperMUC, one of the world’s fastest HPC systems. We explain how LoadLeveler predicts execution times and the average power consumption of the system’s workloads at varying CPU frequencies and compare the prediction to real measurements conducted on various benchmarks. Since the prediction model proves to be accurate for our application workloads, we can analyze the LoadLeveler predictions for a large fraction of the SuperMUC application portfolio. This enables us to define a policy for energy aware scheduling on SuperMUC, which selects the CPU frequencies considering the applications’ power and performance characteristics thereby providing an optimized tradeoff between energy savings and execution time.

Keywords

energy aware scheduling power modelling resource management HPC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TOP500 Supercomputer Sites, http://www.top500.org/
  2. 2.
    Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., et al.: Exascale computing study: Technology challenges in achieving exascale systems. In: Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO). Tech. Rep. (2008)Google Scholar
  3. 3.
    Wilde, T., Auweter, A., Shoukourian, H.: The 4 pillar framework for energy efficient HPC data centers. Computer Science-Research and Development, 1–11 (2013)Google Scholar
  4. 4.
    Burd, T.D., Brodersen, R.W.: Energy efficient CMOS microprocessor design. In: Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences, vol. 1, pp. 288–297. IEEE (1995)Google Scholar
  5. 5.
    Horowitz, M., Indermaur, T., Gonzalez, R.: Low-power digital design. In: IEEE Symposium on Low Power Electronics, Digest of Technical Papers, pp. 8–11. IEEE (1994)Google Scholar
  6. 6.
    IBM: Tivoli workload scheduler LoadLeveler, http://www.ibm.com/systems/software/loadleveler/
  7. 7.
    Bell, R., Brochard, L., DeSota, D., Panda, R., Thomas, F.: Energy-aware job scheduling for cluster environments. US Patent 8,612,984 (December 17, 2013)Google Scholar
  8. 8.
    Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities: SuperMUC supercomputer, http://www.lrz.de/services/compute/supermuc/
  9. 9.
    Brochard, L., Panda, R., Desota, D., Thomas, F., Bell Jr., R.: Optimizing performance and energy of high performance computing applications. Parallel Computing: From Multicores and GPU’s to Petascale 19, 455 (2010)Google Scholar
  10. 10.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21(39), 395502 (2009)Google Scholar
  11. 11.
    Springel, V.: The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society 364(4), 1105–1134 (2005)CrossRefGoogle Scholar
  12. 12.
    Käser, M., de al Puente, J., Castro, C., Hermann, V., Dumbser, M.: Seismic wave field modelling using high performance computing (2008)Google Scholar
  13. 13.
    Feichtinger, C., Donath, S., Köstler, H., Götz, J., Rüde, U.: WaLBerla: HPC software design for computational engineering simulations. Journal of Computational Science 2(2), 105–112 (2011)CrossRefGoogle Scholar
  14. 14.
    Heinecke, A., Breuer, A., Gabriel, A., Pelties, C., Rettenberger, S., Bader, M., Wenk, S.: Optimized kernels for large scale earthquake simulations with SeisSol, an unstructured ADER-DG code. In: Supercomputing 2013, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE (2013)Google Scholar
  15. 15.
    Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented tool suite for x86 multicore environments. In: 2010 39th International Conference on Parallel Processing Workshops (ICPPW), pp. 207–216. IEEE (2010)Google Scholar
  16. 16.
    Ge, R., Feng, X., Cameron, K.W.: Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 34. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Freeh, V.W., Lowenthal, D.K., Pan, F., Kappiah, N., Springer, R., Rountree, B.L., Femal, M.E.: Analyzing the energy-time trade-off in high-performance computing applications. IEEE Transactions on Parallel and Distributed Systems 18(6), 835–848 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Axel Auweter
    • 1
  • Arndt Bode
    • 1
  • Matthias Brehm
    • 1
  • Luigi Brochard
    • 2
  • Nicolay Hammer
    • 1
  • Herbert Huber
    • 1
  • Raj Panda
    • 3
  • Francois Thomas
    • 2
  • Torsten Wilde
    • 1
  1. 1.Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and HumanitiesGarchingGermany
  2. 2.IBM System and Technology GroupMontpellierFrance
  3. 3.IBM System and Technology GroupAustinUSA

Personalised recommendations