Automatic Feedback on Cognitive Load and Emotional State of Traffic Controllers

  • Mark A. Neerincx
  • Maaike Harbers
  • Dustin Lim
  • Veerle van der Tas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8532)

Abstract

Workload research in command, information and process-control centers, resulted in a modular and formal Cognitive Load and Emotional State (CLES) model with transparent and easy-to-modify classification and assessment techniques. The model distinguishes three representation and analysis layers with an increasing level of abstraction, focusing on respectively the sensing, modeling, and reasoning. Fuzzy logic and its (membership) rules are generated to map a set of values to a cognitive and emotional state (modeling), and to detect surprises of anomalies (reasoning). The models and algorithms allow humans to remain in the loop of workload assessments and distributions, an important resilience requirement of human-automation teams. By detecting unexpected changes (surprises and anomalies) and the corresponding cognition-emotion-performance dependencies, the CLES monitor is expected to improve team’s responsiveness to new situations.

Keywords

resilience engineering workload affective computing electronic partners traffic management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferreira, P.N., Balfe, N.: The contribution of automation to resilience in rail traffic control. In: Harris, D. (ed.) EPCE 2014. LNCS (LNAI), vol. 8532, pp. 469–480. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Hollnagel, E., Woods, D.D., Leveson, N. (eds.): Resilience engineering: concepts and percepts. Ashgate Publishing Limited, Hampshire (2006)Google Scholar
  3. 3.
    Neerincx, M.A., Grant, T.: Evolution of Electronic Partners: Human-Automation Operations and ePartners During Planetary Missions. Journal of Cosmology 12, 3825–3833 (2010)Google Scholar
  4. 4.
    Neerincx, M.A.: Situated Cognitive Engineering for Crew Support in Space. Personal and Ubiquitous Computing 15(5), 445–456 (2011)CrossRefGoogle Scholar
  5. 5.
    Wickens, C.D., Hollands, J.G., Parasuraman, R., Banbury, S.: Engineering Psychology & Human Performance, 4th edn. Prentice-Hall (2012)Google Scholar
  6. 6.
    Picard, R.: Affective computing. MIT Press, Cambridge (1997)Google Scholar
  7. 7.
    Neerincx, M.A., Lindenberg, J.: Situated cognitive engineering for complex task environments. In: Schraagen, J.M.C., Militello, L., Ormerod, T., Lipshitz, R. (eds.) Naturalistic Decision Making and Macrocognition, pp. 373–390. Ashgate Publishing Limited, Aldershot (2008)Google Scholar
  8. 8.
    Rasmussen, J.: Information Processing and Human–Machine Interaction: An Approach to Cognitive Engineering. Elsevier, Amsterdam (1996)Google Scholar
  9. 9.
    Neerincx, M.A., Griffioen, E.: Cognitive task analysis: harmonizing tasks to human capacities. Ergonomics 39(4), 543–561 (1996)CrossRefGoogle Scholar
  10. 10.
    Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A.M., Koch, I.: Control and interference in task switching—A review. Psychological Bulletin 136(5), 849–874 (2010)CrossRefGoogle Scholar
  11. 11.
    Neerincx, M.A.: Cognitive task load design: model, methods and examples. In: Hollnagel, E. (ed.) Handbook of Cognitive Task Design, ch. 13, pp. 283–305. Lawrence Erlbaum Associates, Mahwah (2003)CrossRefGoogle Scholar
  12. 12.
    Grootjen, M., Neerincx, M.A., Veltman, J.A.: Cognitive task load in naval ship control centres: from identification to prediction. Ergonomics 49, 1238–1264 (2006)CrossRefGoogle Scholar
  13. 13.
    Neerincx, M.A., Kennedie, S., Grootjen, F., Grootjen, M.: Modelling Cognitive Task Load and Emotion for Adaptive Maritime Interfaces. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience. Proceedings of the 5th International Conference of the Augmented Cognition. LNCS (LNAI), pp. 260–269. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers, vol. 6. World Scientific (1996)Google Scholar
  15. 15.
    Harbers, M., Aydogan, R., Jonker, C.M., Neerincx, M.A.: Sharing Information in Teams: Giving Up Privacy or Compromising on Team Performance? In: Proceedings AAMAS 2014, Paris, France, May 5-9 (2014)Google Scholar
  16. 16.
    Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14(4), 261–292 (1996)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mandryk, R.L., Atkins, M.S.: A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International Journal of Human-Computer Studies 65(4), 329–347 (2007)CrossRefGoogle Scholar
  18. 18.
    De Greef, T.E., Arciszewski, H.F.R., Neerincx, M.A.: Adaptive Automation based on an Object-Oriented Task Model: Implementation and Evaluation in a Realistic C2 Environment. Journal of Cognitive Engineering and Decision Making 4, 152–173 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mark A. Neerincx
    • 1
    • 2
  • Maaike Harbers
    • 1
  • Dustin Lim
    • 1
  • Veerle van der Tas
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.TNOSoesterbergThe Netherlands

Personalised recommendations