The Influence of Visualization on Control Performance in a Flight Simulator

  • Menja Scheer
  • Frank M. Nieuwenhuizen
  • Heinrich H. Bülthoff
  • Lewis L. Chuang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8532)

Abstract

Flight simulators are often assessed in terms of how well they imitate the physical reality that they endeavor to recreate. Given that vehicle simulators are primarily used for training purposes, it is equally important to consider the implications of visualization in terms of its influence on the user’s control performance. In this paper, we report that a complex and realistic visual world environment can result in larger performance errors compared to a simplified, yet equivalent, visualization of the same control task. This is accompanied by an increase in subjective workload. A detailed analysis of control performance indicates that this is because the error perception is more variable in a real world environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Browning, A.N., Grossberg, S., Mingolla, E.: A neural model of how the brain computes heading from optic flow in realistic scenes. Cognitive Psychology 59(4), 320–356 (2009)CrossRefGoogle Scholar
  2. 2.
    Larish, J.F., Flach, J.M.: Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance 16(2), 295 (1990)Google Scholar
  3. 3.
    Barfield, W., Rosenberg, C., Kraft, C.: The Effects of Visual Cues to Realism and Perceived Impact Point during Final Approach. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 33(2), pp. 115–119 (October 1989)Google Scholar
  4. 4.
    De Maio, J., Rinalducci, E.J., Brooks, R., Brunderman, J.: Visual Cueing Effectiveness: Comparison of Perception and Flying Performance. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 27(11), pp. 928–932 (1983)Google Scholar
  5. 5.
    Zaal, P.M.T., Nieuwenhuizen, F.M., van Paassen, M.M., Mulder, M.: Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 43(2), 544–556 (2012)Google Scholar
  6. 6.
    Reed, M.P., Green, P.A.: Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task. Ergonomics 42(8), 1015–1037 (1999)CrossRefGoogle Scholar
  7. 7.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index). Results of Empirical and Theoretical Research (1988)Google Scholar
  8. 8.
    Brainard, D.H.: The Psychophysics Toolbox. Spatial Vision 10, 433–436 (1997)CrossRefGoogle Scholar
  9. 9.
    Pelli, D.G.: The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision 10, 437–442 (1997)CrossRefGoogle Scholar
  10. 10.
    Perry, A.: The flightgear flight simulator. In: USENIX Annual Technical Conference, Boston, M.A. (2004)Google Scholar
  11. 11.
    Nieuwenhuizen, F.M., Mulder, M., van Paassen, M.M., Bülthoff, H.H.: Influences of Simulator Motion System Characteristics on Pilot Control Behavior. Journal of Guidance, Control, and Dynamics 36(3), 667–676 (2013)CrossRefGoogle Scholar
  12. 12.
    Jagacinski, R.J., Flach, J.M.: Control Theory for Humans - Quantitative Approaches to Modeling Performance, ch. 10, pp. 104–109. CRC Press, Mahwah (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Menja Scheer
    • 1
  • Frank M. Nieuwenhuizen
    • 1
  • Heinrich H. Bülthoff
    • 1
    • 2
  • Lewis L. Chuang
    • 1
  1. 1.Department of Perception, Cognition and ActionMax Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Department of Cognitive and Brain EngineeringKorea UniversityKorea

Personalised recommendations