Cell Mapping Techniques for Exploratory Landscape Analysis

  • Pascal Kerschke
  • Mike Preuss
  • Carlos Hernández
  • Oliver Schütze
  • Jian-Qiao Sun
  • Christian Grimme
  • Günter Rudolph
  • Bernd Bischl
  • Heike Trautmann
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 288)

Abstract

Exploratory Landscape Analysis is an effective and sophisticated approach to characterize the properties of continuous optimization problems. The overall aim is to exploit this knowledge to give recommendations of the individually best suited algorithm for unseen optimization problems. Recent research revealed a high potential of this methodology in this respect based on a set of well-defined, computable features which only requires a quite small sample of function evaluations. In this paper, new features based on the cell mapping concept are introduced and shown to improve the existing feature set in terms of predicting expert-designed high-level properties, such as the degree of multimodality or the global structure, for 2-dimensional single objective optimization problems.

Keywords

exploratory landscape analysis cell mapping black-box optimization continuous optimization single objective optimization algorithm selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)MATHGoogle Scholar
  2. 2.
    Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.: Experimental methods for the analysis of optimization algorithms. Springer (2010)Google Scholar
  3. 3.
    Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of nk landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 555–562. ACM, New York (2008)Google Scholar
  4. 4.
    Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., Weihs, C.: Analyzing the BBOB Results by Means of Benchmarking Concepts. Evolutionary Computation Journal (accepted for publication, 2014)Google Scholar
  5. 5.
    Mersmann, O., Trautmann, H., Naujoks, B., Weihs, C.: Benchmarking evolutionary multiobjective optimization algorithms. In: Ishibuchi, H., et al. (eds.) IEEE Congress on Evolutionary Computation (CEC), pp. 1311–1318. IEEE Press, Piscataway (2010)Google Scholar
  6. 6.
    Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (2010)Google Scholar
  7. 7.
    Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 829–836. ACM, New York (2011)Google Scholar
  8. 8.
    Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 313–320. ACM, New York (2012)Google Scholar
  9. 9.
    Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Abell, T., Malitsky, Y., Tierney, K.: Features for exploiting black-box optimization problem structure. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 30–36. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Morgan, R., Gallagher, M.: Length scale for characterising continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 407–416. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Morgan, R., Gallagher, M.: Using landscape topology to compare continuous metaheuristics: A framework and case study on edas and ridge structure. Evol. Comput. 20(2), 277–299 (2012)CrossRefGoogle Scholar
  13. 13.
    Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Landscape characterization of numerical optimization problems using biased scattered data. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)Google Scholar
  14. 14.
    Hsu, C.S.: Cell-to-cell mapping: A method of global analysis for nonlinear systems. Applied mathematical sciences. Springer (1987)Google Scholar
  15. 15.
    Hsu, C.S.: A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications 46(4), 547–569 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Bursal, F.H., Hsu, C.S.: Application of a cell-mapping method to optimal control problems. International Journal of Control 49(5), 1505–1522 (1989)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Crespo, L.G., Sun, J.Q.: Stochastic Optimal Control of Nonlinear Dynamic Systems via Bellman’s Principle and Cell Mapping. Automatica 39(12), 2109–2114 (2003)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.-Q.: Simple Cell Mapping Method for Multi-objective Optimal Feedback Control Design. International Journal of Dynamics and Control 1(3), 231–238 (2013)CrossRefGoogle Scholar
  19. 19.
    Kemeny, J., Snell, J.: Finite Markov Chains: With a New Appendix ”Generalization of a Fundamental Matrix”. Undergraduate Texts in Mathematics. Springer (1976)Google Scholar
  20. 20.
    Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Jägersküpper, J., Preuß, M.: Empirical investigation of simplified step-size control in metaheuristics with a view to theory. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 263–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, Massachusetts (2013)Google Scholar
  23. 23.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013)Google Scholar
  24. 24.
    Bischl, B.: mlr: Machine Learning in R. R package version 1.2Google Scholar
  25. 25.
    Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods in model validation. Evolutionary Computation Journal 20(2), 249–275 (2012)CrossRefGoogle Scholar
  26. 26.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Kerschke
    • 1
  • Mike Preuss
    • 1
  • Carlos Hernández
    • 2
  • Oliver Schütze
    • 2
  • Jian-Qiao Sun
    • 3
  • Christian Grimme
    • 1
  • Günter Rudolph
    • 4
  • Bernd Bischl
    • 5
  • Heike Trautmann
    • 1
  1. 1.Department of Information SystemsUniversity of MünsterMünsterGermany
  2. 2.Department of Computer ScienceCINVESTAVMexico CityMexico
  3. 3.School of EngineeringUniversity of CaliforniaMercedUSA
  4. 4.Department of Computer ScienceTU Dortmund UniversityDortmundGermany
  5. 5.Statistics DepartmentTU Dortmund UniversityDortmundGermany

Personalised recommendations