Advertisement

Hypervolume Maximization via Set Based Newton’s Method

  • Victor Adrián Sosa Hernández
  • Oliver Schütze
  • Michael Emmerich
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 288)

Abstract

The hypervolume indicator is one of the most widely used tool to measure the performance in evolutionary multi-objective optimization. While derivative free methods such as specialized evolutionary algorithms received considerable attention in the past, the investigation of derivative based methods is still scarce. In this work, we aim to make a contribution to fill this gap.

Based on the hypervolume gradient that has recently been proposed for general unconstrained multi-objective optimization problems, we first investigate the behavior of the related hypervolume flow. Under this flow, populations evolve toward a final state (population) whose hypervolume indicator is locally maximal. Some insights obtained on selected test functions explain to a certain extend observations made in previous studies and give some possible insights into the application of mathematical programming techniques to this problem. Further, we apply a population-based version of the Newton Raphson method for the maximization of the hypervolume. Fast set-based convergence can be observed towards optimal populations, however, the results indicate that the success depends crucially on the choice of the initial population.

Keywords

multi-objective optimization hypervolume indicator set based optimization multi-objective gradient Newton Raphson method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleischer, M.: The measure of pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Zitzler, E., Thiele, L., Bader, J.: SPAM: Set preference algorithm for multiobjective optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 847–858. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, ETH Zurich, Switzerland (1999)Google Scholar
  4. 4.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  7. 7.
    Koch, P., Kramer, O., Rudolph, G., Beume, N.: On the hybridization of sms-emoa and local search for continuous multiobjective optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 603–610. ACM (2009)Google Scholar
  8. 8.
    Bader, J., Zitzler, E.: Hype: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)CrossRefGoogle Scholar
  9. 9.
    Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid for computing pareto front approximations maximizing the s-metric. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator gradient field. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 169–193. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Hernández, V.A.S., Schütze, O., Rudolph, G., Trautmann, H.: The directed search method for pareto front approximations with maximum dominated hypervolume. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,and Evolutionary Computation IV. AISC, vol. 227, pp. 189–205. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Pareto, V.: Manual of Political Economy. The MacMillan Press (1971 (original edition in French in 1927))Google Scholar
  13. 13.
    Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar
  14. 14.
    Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal mu-distributions and the choice of the reference point. In: FOGA 2009: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 87–102. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Emmerich, M., Deutz, A. (eds.): EVOLVE 2013 - A Bridge Between Probability. Set Oriented Numerics, and Evolutionary Computation - Short Paper and Extended Abstract Proceedings, LIACS, Leiden University (July 2013)Google Scholar
  16. 16.
    Emmerich, M., Deutz, A.: A family of test problems with pareto-fronts of variable curvature based on super-spheres. In: MCDM 2006, Chania, Greece, June 19-23 (2006)Google Scholar
  17. 17.
    Schütze, O.: Set Oriented Methods for Global Optimization. PhD thesis, University of Paderborn (2004), http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/
  18. 18.
    Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Witting, K.: Numerical Algorithms for the Treatment of Parametric Optimization Problems and Applications. PhD thesis, University of Paderborn (2012)Google Scholar
  20. 20.
    Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. on Optimization 20, 602–626 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Victor Adrián Sosa Hernández
    • 1
  • Oliver Schütze
    • 1
  • Michael Emmerich
    • 2
  1. 1.Computer Science DepartmentCINVESTAV-IPNMexico CityMéxico
  2. 2.Multicriteria Optimization and Decision Analysis Group, LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations