Advertisement

Speech Based Shopping Assistance for the Blind 

  • J. Farzana
  • Aslam Muhammad
  • A. M. Martinez-Enriquez
  • Z. S. Afraz
  • W. Talha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8495)

Abstract

Vision loss is one of ultimate obstacle in the lives of blind that prevent them to perform tasks on their own and self-reliantly. The blind are trusting on others for the selection of trendy and eye-catching accessories because self –buying effort lead them in such collection that is mismatch with their personalities and society style. That is why they are bound to depend upon on their family for shopping assistance, who often may not afford quality time due to busy routine. The thought of dependency rises lack of self-confidence in blinds, absorbs their ability to negotiate, decision making power, and social activities. Via uninterrupted speech communication, our proposed talking accessories selector assistant for the blind provides quick decision support in picking the routinely wearable accessories like dress, shoes, cosmetics, according to the society drifts and events. The foremost determination of this assistance is to make the blind liberated and more assertive.

Keywords

Speech processing image processing knowledge based system wearable item selection visual impairment 

References

  1. 1.
    Jacquet, C., Bellik, Y., Bourda, Y.: Electronic locomotion aids for the blind: Towards more assistive systems. Intelligent Paradigms for Assistive and Preventive Healthcare 19, 133–163 (2006)CrossRefGoogle Scholar
  2. 2.
    Visual impairment and blindness-Fact Sheet (282), http://www.who.int/mediacentre/factsheets/fs282/en/ (visited on February 2012)
  3. 3.
    Blindness and Low Vision, Fact Sheet (2013), https://nfb.org/fact-sheet-blindness-and-low-vision (accessed March 19, 2013)
  4. 4.
    Slavík, P., Němec, V., Sporka, A.J.: Speech based user interface for users with special needs. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 45–55. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    MarkkuTurunen, H., Soronen, S., Pakarinen, H.J., et al.: Accessible multimodal media center application for blind and partially sighted people. CIE 8(3), 16 (2010)Google Scholar
  6. 6.
    Alonso, F., Fuertes, J.L., Gonzalez, A.L., Martinez, L.: User-interface modelling for blind users 5105, 789–796 (2008)Google Scholar
  7. 7.
    Jian, Y., Jin, J.: An interactive interface between human and computer based on pattern and speech recognition. In: ICSAI, pp. 505–509. IEEE (2012)Google Scholar
  8. 8.
    Verma, P., Singh, R., Kumar Singh, A.: SICE: An enhanced framework for design and development of speech interfaces on client environment. IJCA 28(3), 1–8 (2011)CrossRefGoogle Scholar
  9. 9.
    Bigham, J.P., Lau, T., Nichols, J.: Trailblazer: enabling blind users to blaze trails through the web, Sanibel Island, Florida, USA, pp. 177–186. ACM (February 2009)Google Scholar
  10. 10.
    Mahmoud, T.M.: A new fast skin color detection technique. World Academy of Science, Engineering and Technology 43, 501–505 (2008)Google Scholar
  11. 11.
    Sangho Yoon, M., Harville, H.: Baker, and N.Bhatii. Automatic skin pixel selection and skin color classification. In: Image Processing, pp. 941–944. IEEE (2006)Google Scholar
  12. 12.
    Siddiqi, M.H., Farooq, F., Lee, S.: A robust feature extraction method for human facial expressions recognition systems. In: IVC 2012, NZ, pp. 464–468. ACM (2012)Google Scholar
  13. 13.
    Oliveira, V.A., Conci, A.: Skin detection using hsv color space. In: Pedrini, H., Marques de Carvalho, J. (eds.) Workshops of Sibgrapi, pp. 1–2 (2009)Google Scholar
  14. 14.
    Shih, F.Y., Chuang, C.-F.: Automatic extraction of head and face boundaries and facial features. Information Science 158, 117–130 (2004)CrossRefGoogle Scholar
  15. 15.
    Wechsler, H., Kidode, M.: A new edge detection technique and its implementation. Systems, Man and Cybernetics and Transaction on IEEE 7(12), 827–836 (1977)CrossRefGoogle Scholar
  16. 16.
    Lee, J.S., Kuo, Y.M., Chung, P.C.: The adult image identification based on online sampling, pp. 2566–2571. IEEE (July 2006)Google Scholar
  17. 17.
    Aasim, K., Muhammad, A., Martinez-Enriquez, A.M.: Intelligent Implicit Interface for Wearable Items Suggestion. In: An, A., Lingras, P., Petty, S., Huang, R. (eds.) AMT 2010. LNCS (LNAI), vol. 6335, pp. 26–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Human Height Measuring, http://www.acuitylaser.com/products/category/human-height-measuring (visited on March 2013)
  19. 19.
    Fooprateepsiri, R., Kurutach, W., et al.: A fast and accurate face authentication method using hamming-trace transform combination. IETE Technical Review 27(5), 365 (2010)CrossRefGoogle Scholar
  20. 20.
    BalaMurugan, M.T., Balaji, M., Venkataramani, B.: Spoc-based speechtotext conversion. National Institute of Technology, Trichy (2006)Google Scholar
  21. 21.
    Terrillon, J.-C., Akamatsu, S.: Comparative performance of different chrominance spaces for color segmentation and detectionof human faces in complex scene images. Vision Interface 99, 1821 (1999)Google Scholar
  22. 22.
    Patil, Y.M., Patil, M.M.: Robust skin colour detectionand tracking algorithm. IJERT 1(8), 1–6 (2012)Google Scholar
  23. 23.
    Paul, S.K., Uddin, M.S., Bouakaz, S.: Extractionof facial feature points using cumulative histogram. IJCSI 9 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. Farzana
    • 1
  • Aslam Muhammad
    • 1
  • A. M. Martinez-Enriquez
    • 2
  • Z. S. Afraz
    • 1
  • W. Talha
    • 1
  1. 1.University of Engineering and TechnologyLahorePakistan
  2. 2.Department of Computer ScienceCINVESTAV-IPND.F. MexicoMexico

Personalised recommendations