Improved Performance of Computer Networks by Embedded Pattern Detection

  • Angel Kuri-Morales
  • Iván Cortés-Arce
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8495)


Computer Networks are usually balanced appealing to personal experience and heuristics, without taking advantage of the behavioral patterns embedded in their operation. In this work we report the application of tools of computational intelligence to find such patterns and take advantage of them to improve the network’s performance. The traditional traffic flow for Computer Network is improved by the concatenated use of the following “tools”: a) Applying intelligent agents, b) Forecasting the traffic flow of the network via Multi-Layer Perceptrons (MLP) and c) Optimizing the forecasted network’s parameters with a genetic algorithm. We discuss the implementation and experimentally show that every consecutive new tool introduced improves the behavior of the network. This incremental improvement can be explained from the characterization of the network’s dynamics as a set of emerging patterns in time.


Load Balancing Computer Networks Intelligent Agents Neural Networks Genetic Algorithms 


  1. 1.
    Mahlous, A.: Multipath Routing Using Max Flow Algorithms For Internet Traffic: Development and Performance Evaluation of Max Flow Multipath Routing Schemes for the Internet using Max Flow Algorithms. Lambert Academic Publishing (2009)Google Scholar
  2. 2.
    Bellman, R.: On A Routing Problem. RAND Corporation, Santa Monica (1958)Google Scholar
  3. 3.
    Dijkstra, E.: A note on Two Problems in Connexion with Graphs. Numerische Mathmaik 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aceves, J.: Loop Free Routing Using Diffusing Computations. IEEE/ACM Transactions on Networking 1(1) (1993)Google Scholar
  5. 5.
    Kurose, J., Ross, K.: Computer Networking: A Top Down Approach, pp. 374–387. Addison Wesley (2010)Google Scholar
  6. 6.
    Awdche, D., Malcom, J., O’Dell, M., MacManus, J.: Requirements for Traffic Engineering Over MPLS. RFC 2702. Internet Society (1999)Google Scholar
  7. 7.
    Akami Technologies, Internet Bottlenecks: The Case for Edge Delivery Services (2000),
  8. 8.
    Sinha, R., Papadopoulus, C., Heidenmann, J.: Internet Packet Size Distributions: Some Observations. University of Southern California (2005)Google Scholar
  9. 9.
    Ahmad, I., Ghafoor, A., Mehrotra, K., Mohan, C., Ranka, S.: Performance modeling of load balancing algorithms using neural networks. L.C. Smith College of Engineering and Computer Science. Syracuse University (1994)Google Scholar
  10. 10.
    Awdche, D., Malcom, J., O’Dell, M., MacManus, J.: Requirements for Traffic Engineering Over MPLS. RFC 2702. Internet Society (1999)Google Scholar
  11. 11.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)Google Scholar
  12. 12.
    Kuri-Morales, Á.F.: Pattern Recognition via Vasconcelos’ Genetic Algorithm. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 328–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kuri-Morales, A.: Application of a Method Based on Computational Intelligence for the Optimization of Resources Determined from Multivariable Phenomena. In: Batyrshin, I., Mendoza, M.G. (eds.) MICAI 2012, Part II. LNCS, vol. 7630, pp. 292–303. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Kuri-Morales, A.: A Universal Eclectic Genetic Algorithm for Constrained Optimization. In: Proceedings 6th European Congress on Intelligent Techniques & Soft Computing, EUFIT 1998 (1998)Google Scholar
  15. 15.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley (1989)Google Scholar
  16. 16.
    Anand, V., Spears, W.: A Study of Crossover Operators in Genetic Programming. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409–418. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Russell, S., Norving, P., Artificial Intelligence: A Modern Approach. Prentice Hall (2010)Google Scholar
  18. 18.
    Haykin, S.: Neural Networks.: A comprehensive Foundation. Prentice Hall (1999)Google Scholar
  19. 19.
    Stallings, W.: Queuing Analysis Notes (2013),
  20. 20.
    Kleinrock, L.: On modeling and Analysis of Computer Networks. Proceedings of the IEEE 81(8) (August 1993)Google Scholar
  21. 21.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. A Lecture Notes Editorial Board (1990)Google Scholar
  22. 22.
    Wooldridge, M., Jennings, N.: Intelligent Agents: theory and practice. The Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  23. 23.
    Vargas, A.: OMNeT++ User Manual Version 4.3.1. OpenSim Ldt. (2011)Google Scholar
  24. 24.
    Sinha, R., Papadopoulos, C., Heidemann, J.: Internet packet size distributions: Some observations. USC/Information Sciences Inst (2007),
  25. 25.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)CrossRefGoogle Scholar
  26. 26.
    Kuri-Morales, A., Aldana-Bobadilla, E.: The Best Genetic Algorithm Part I. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Graziani, R., Johnson, A.: Routing Protocols and Concepts, CCNA exploration companion guide. Cisco Press (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Angel Kuri-Morales
    • 1
  • Iván Cortés-Arce
    • 2
  1. 1.Instituto Tecnológico Autónomo de México, ITAM, D.F.México
  2. 2.Universidad Nacional Autónoma de México, IIMAS, D.F.México

Personalised recommendations