A Feasibility Study on the Use of Binary Keypoint Descriptors for 3D Face Recognition

  • Janez Križaj
  • Vitomir Štruc
  • France Mihelič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8495)


Despite the progress made in the area of local image descriptors in recent years, virtually no literature is available on the use of more recent descriptors for the problem of 3D face recognition, such as BRIEF, ORB, BRISK or FREAK, which are binary in nature and, therefore, tend to be faster to compute and match, while requiring significantly less memory for storage than, for example, SIFT or SURF. In this paper, we try to close this gap and present a feasibility study on the use of these descriptors for 3D face recognition. Descriptors are evaluated on the three challenging 3D face image datasets, namely, the FRGC, UMB and CASIA. Our experiments show the binary descriptors ensure slightly lower verification rates than SIFT, comparable to those of the SURF descriptor, while being an order of magnitude faster than SIFT. The results suggest that the use of binary descriptors represents a viable alternative to the established descriptors.


keypoints descriptors face recognition 3D images 


  1. 1.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bayramoğlu, N., Alatan, A.: Shape Index SIFT: Range Image Recognition Using Local Features. In: Proc. ICPR, pp. 352–355 (2010)Google Scholar
  3. 3.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  4. 4.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Colombo, A., Cusano, C., Schettini, R.: UMB-DB: A database of partially occluded 3D faces. In: ICCV Workshops, pp. 2113–2119 (2011)Google Scholar
  6. 6.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  7. 7.
    Huang, D., et al.: 3-D Face Recognition Using eLBP-Based Facial Description and Local Feature Hybrid Matching. IEEE TIFS 7(5), 1551–1565 (2012)Google Scholar
  8. 8.
    Inan, T., Halici, U.: 3-D Face Recognition With Local Shape Descriptors. IEEE TIFS 7(2), 577–587 (2012)Google Scholar
  9. 9.
    Križaj, J., Štruc, V., Dobrišek, S.: Combining 3D Face Representations using Region Covariance Descriptors and Statistical Models. In: IEEE FG, pp. 1–7 (2013)Google Scholar
  10. 10.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust invariant scalable keypoints. In: Proc. ICCV, pp. 2548–2555 (2011)Google Scholar
  11. 11.
    Lo, T.W.R., Siebert, J.P.: Local Feature Extraction and Matching on Range Images: 2. 5D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)CrossRefGoogle Scholar
  12. 12.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and Generic Corner Detection Based on the Accelerated Segment Test. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 183–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE TPAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  15. 15.
    Ortiz, R.: FREAK: Fast Retina Keypoint. In: Proc. CVPR, Washington, DC, USA, pp. 510–517 (2012)Google Scholar
  16. 16.
    Phillips, P.J., et al.: Overview of the Face Recognition Grand Challenge. In: Proc. CVPR, pp. 947–954 (2005)Google Scholar
  17. 17.
    Rosten, E., Drummond, T.W.: Machine Learning for High-Speed Corner Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An Efficient Alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)Google Scholar
  19. 19.
    Segundo, M., Queirolo, C., Bellon, O.R.P., Silva, L.: Automatic 3D Facial Segmentation and Landmark Detection. In: Proc. ICIAP, pp. 431–436 (2007)Google Scholar
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Janez Križaj
    • 1
  • Vitomir Štruc
    • 1
  • France Mihelič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations