Robotics for Sustainable Broad-Acre Agriculture

  • David BallEmail author
  • Patrick Ross
  • Andrew English
  • Tim Patten
  • Ben Upcroft
  • Robert Fitch
  • Salah Sukkarieh
  • Gordon Wyeth
  • Peter Corke
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 105)


This paper describes the development of small low-cost cooperative robots for sustainable broad-acre agriculture to increase broad-acre crop production and reduce environmental impact. The current focus of the project is to use robotics to deal with resistant weeds, a critical problem for Australian farmers. To keep the overall system affordable our robot uses low-cost cameras and positioning sensors to perform a large scale coverage task while also avoiding obstacles. A multi-robot coordinator assigns parts of a given field to individual robots. The paper describes the modification of an electric vehicle for autonomy and experimental results from one real robot and twelve simulated robots working in coordination for approximately two hours on a 55 hectare field in Emerald Australia. Over this time the real robot ‘sprayed’ 6 hectares missing 2.6% and overlapping 9.7% within its assigned field partition, and successfully avoided three obstacles.


Inertia Measurement Unit Stereo Match Real Robot Path Planner Real Time Kinematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sinden, J., Jones, R., Hester, S., et al.: The economic impact of weeds in Australia. CRC for Australian Weed Management (2004)Google Scholar
  2. 2.
    Taylor, J.: Benefits of permanent traffic lanes in a controlled traffic crop production system. Soil and Tillage Research 3, 385–395 (1983)CrossRefGoogle Scholar
  3. 3.
    Bell, T.: Automatic tractor guidance using carrier-phase differential GPS. Computers and Electronics in Agriculture 25, 53–66 (2000)CrossRefGoogle Scholar
  4. 4.
    Reid, J.F., Searcy, S.W.: Vision-based guidance of an agricultural tractor. IEEE Control Systems Magazine, 39–43 (1987)Google Scholar
  5. 5.
    Billingsley, J., Schoenfisch, M.: The successful development of a vision guidance system for agriculture. Computers and Electronics in Agriculture 16, 147–163 (1997)CrossRefGoogle Scholar
  6. 6.
    Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the IEEE International Conference on Intelligent Robot and Systems, pp. 1838–1844 (1997)Google Scholar
  7. 7.
    Pilarski, T., Happold, M., Pangels, H., et al.: The demeter system for automated harvesting. Autonomous Robots 13, 9–20 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Stentz, A., Dima, C., Wellington, C., et al.: A System for Semi-Autonomous Tractor Operations. Autonomous Robots 13, 87–104 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Amidi, O.: Integrated mobile robot control. Carnegie Mellon University (1990)Google Scholar
  10. 10.
    Torii, T.: Research in autonomous agriculture vehicles in Japan. Computers and Electronics in Agriculture 25, 133–153 (2000)CrossRefGoogle Scholar
  11. 11.
    Johnson, D.A., Naffin, D.J., Puhalla, J.S., et al.: Development and implementation of a team of robotic tractors for autonomous peat moss harvesting. Journal of Field Robotics 26, 549–571 (2009)CrossRefGoogle Scholar
  12. 12.
    Moorehead, S.J., Wellington, C.K., Gilmore, B.J., Vallespi, C.: Automating orchards: A system of autonomous tractors for orchard maintenance. In: Proceedings of the IEEE International Conference on Intelligent Robot and Systems (2012)Google Scholar
  13. 13.
    Bakker, T., Asselt van, K., Bontsema, J., et al.: Systematic design of an autonomous platform for robotic weeding. Journal of Terramechanics 47, 63–73 (2010)CrossRefGoogle Scholar
  14. 14.
    Ruckelshausen, A., Biber, P., Dorna, M., et al.: BoniRob: an autonomous field robot platform for individual plant phenotyping. Precision Agriculture 9, 841 (2009)Google Scholar
  15. 15.
    Jorgensen, R.N., Sorensen, C.G., Maagaard, J., et al.: HortiBot: A System Design of a Robotic Tool Carrier for High-tech Plant Nursing. Agricultural Engineering International 9 (2007)Google Scholar
  16. 16.
    Jensen, K., Nielsen, S.H., Joergensen, R.N., et al.: A low cost, modular robotics tool carrier for precision agriculture research. In: Proceedings of the 11th International Conference on Precision Agriculture (2012)Google Scholar
  17. 17.
    Choset, H.: Coverage for robotics–A survey of recent results. Annals of Mathematics and Artificial Intelligence 31, 113–126 (2001)CrossRefGoogle Scholar
  18. 18.
    Oksanen, T., Visala, A.: Coverage path planning algorithms for agricultural field machines. Journal of Field Robotics 26, 651–668 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jin, J., Tang, L.: Coverage path planning on three-dimensional terrain for arable farming. Journal of Field Robotics 28, 424–440 (2011)CrossRefGoogle Scholar
  20. 20.
    Hameed, I.A.: Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain. Journal of Intelligent & Robotic Systems, 1–19 (2013)Google Scholar
  21. 21.
    Quigley, M., Gerkey, B., Conley, K., et al.: ROS: an open-source Robot Operating System. In: International Conference on Robotics and Automation (2009)Google Scholar
  22. 22.
    Choset, H., Lynch, K.M., Hutchinson, S., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)Google Scholar
  23. 23.
    Oksanen, T., Visala, A.: Coverage path planning algorithms for agricultural field machines. Journal of Field Robotics 26, 651–668 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Takasu, T., Yasuda, A.: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International Symposium on GPS/GNSS (2009)Google Scholar
  25. 25.
    Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33, 1065–1076 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Geiger, A., Roser, M., Urtasun, R.: Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Cohen, B.J., Chitta, S., Likhachev, M.: Search-based planning for manipulation with motion primitives. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2902–2908. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Ball
    • 1
    Email author
  • Patrick Ross
    • 1
  • Andrew English
    • 1
  • Tim Patten
    • 2
  • Ben Upcroft
    • 1
  • Robert Fitch
    • 2
  • Salah Sukkarieh
    • 2
  • Gordon Wyeth
    • 1
  • Peter Corke
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceQueensland University of Technology (QUT)BrisbaneAustralia
  2. 2.Australian Centre for Field RoboticsThe University of SydneySydneyAustralia

Personalised recommendations