Experiencing Physical and Technical Phenomena in Schools Using Virtual Reality Driving Simulator

  • Polina Häfner
  • Victor Häfner
  • Jivka Ovtcharova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8524)


In the time of globalization and technical advances, companies want to remain competitive on national and international markets. This requires a qualified workforce with a corresponding level of education in the STEM fields. This paper presents a didactic methodology for a virtual reality-based workshop which supplements the school curricula of secondary education institutions. A virtual reality driving simulation application is used in order to enhance the students understanding of different physical and technical phenomena as well as to teach technical skills, such as the ability to program virtual reality applications. We observed that this methodology helps to reduce complexity and aid the understanding of the subject. This is due to the three main contributing factors: Immersion, interaction and engagement. The enthusiasm for the virtual reality systems kept the students motivated not only during the teaching units, but it has also inspired them to pursue the STEM careers.


serious games technology enhanced learning STEM fields secondary education virtual learning environment driving simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Research Council: Rising above the gathering storm: Energizing and employing america for a brighter economic future (2007)Google Scholar
  2. 2.
    European Schoolnet (2014), (accessed February 21, 2014)
  3. 3.
    Bildungsministerium für Bildung und Forschung: Perspektive MINT-Berufe: Förderung von Technik und Naturwissenschaft (2014), (accessed February 21, 2014)
  4. 4.
    Sherman, W.R., Craig, A.B.: Understanding virtual reality: Interface, application, and design. Elsevier (2002)Google Scholar
  5. 5.
    Burdea, G., Coiffet, P.: Virtual reality technology. Presence: Teleoperators and Virtual Environments 12(6), 663–664 (2003)CrossRefGoogle Scholar
  6. 6.
    Riener, R., Harders, M.: Introduction to virtual reality in medicine. In: Virtual Reality in Medicine, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Jiang, M.: Virtual reality boosting automotive development. In: Ma, D., Fan, X., Gausemeier, J., Grafe, M. (eds.) Virtual Reality and Augmented Reality in Industry, pp. 171–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Stone, R., Panfilov, P., Shukshunov, V.: Evolution of aerospace simulation: From immersive virtual reality to serious games. In: 2011 5th International Conference on Recent Advances in Space Technologies (RAST), pp. 655–662 (June 2011)Google Scholar
  9. 9.
    Hsu, K.S., et al.: Application of a virtual reality entertainment system with human-machine haptic sensor device. Journal of Applied Sciences 11, 2145–2153 (2011)CrossRefGoogle Scholar
  10. 10.
    Sampaio, A., Henriques, P., Martins, O.: Virtual reality technology used in civil engineering education. Open Virtual Reality Journal 2, 18–25 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhao, H., Sun, B., Wu, H., Hu, X.: Study on building a 3d interactive virtual learning environment based on opensim platform. In: 2010 International Conference on Audio Language and Image Processing (ICALIP), pp. 1407–1411 (November 2010)Google Scholar
  12. 12.
    Bowman, D.A., Sowndararajan, A., Ragan, E.D., Kopper, R.: Higher levels of immersion improve procedure memorization performance. In: Proceedings of the 15th Joint Virtual Reality Eurographics Conference on Virtual Environments, pp. 121–128. Eurographics Association (2009)Google Scholar
  13. 13.
    Häfner, P., Vinke, C., Häfner, V., Ovtcharova, J., Schotte, W.: The impact of motion in virtual environments on memorization performance. In: 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 104–109 (July 2013)Google Scholar
  14. 14.
    Roussou, M., Oliver, M., Slater, M.: The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning. Virtual Reality 10(3-4), 227–240 (2006)CrossRefGoogle Scholar
  15. 15.
    Trindade, J., Fiolhais, C., Almeida, L.: Science learning in virtual environments: a descriptive study. British Journal of Educational Technology 33(4), 471–488 (2002)CrossRefGoogle Scholar
  16. 16.
    Bowen Loftin, R., Engleberg, M., Benedetti, R.: Applying virtual reality in education: A prototypical virtual physics laboratory. In: Proceedings of the IEEE 1993 Symposium on Research Frontiers in Virtual Reality, pp. 67–74 (October 1993)Google Scholar
  17. 17.
    Kaufmann, H., Schmalstieg, D., Wagner, M.: Construct3d: A virtual reality application for mathematics and geometry education. Education and Information Technologies 5(4), 263–276 (2000)CrossRefGoogle Scholar
  18. 18.
    Susi, T., Johannesson, M., Backlund, P.: Serious games: An overview (2007)Google Scholar
  19. 19.
    Miller, L.M., Chang, C.I., Wang, S., Beier, M.E., Klisch, Y.: Learning and motivational impacts of a multimedia science game. Computers and Education 57(1), 1425–1433 (2011)CrossRefGoogle Scholar
  20. 20.
    Johnson-Glenberg, M., Birchfield, D., Savvides, P., Megowan-Romanowicz, C.: Semi-virtual embodied learning-real world stem assessment. In: Annetta, L., Bronack, S. (eds.) Serious Educational Game Assessment, pp. 241–257. Sense Publishers (2011)Google Scholar
  21. 21.
    Zimmermann, M., Wierse, A.: From immersive engineering to selling and teaching. In: Virtual Reality and Augmented Reality in Industry, pp. 191–198. Springer (2011)Google Scholar
  22. 22.
    Ovtcharova, J.: Prof. Dr. Dr.–Ing. Jivka Ovtcharova eröffnet zusammen mit VISENSO das erste C3-Lab (2014), (accessed: February 21, 2014)
  23. 23.
    Häfner, P., Häfner, V., Ovtcharova, J.: Teaching methodology for virtual reality practical course in engineering education. Procedia Computer Science 25, 251–260 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Polina Häfner
    • 1
  • Victor Häfner
    • 1
  • Jivka Ovtcharova
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations