Advertisement

An Interactive Installation for the Architectural Analysis of Space and Form in Historical Buildings

  • Luis Antonio Hernández Ibáñez
  • Viviana Barneche Naya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8523)

Abstract

This paper describes a methodology for the development of a didactic installation intended to explore the spatial, volumetric and formal relationships that, being present in any architectural work, are basic to understand the compositive and stylistic aspects that define some historical key buildings as paradigms of the history of Architecture. Such an exploration can only be done by providing the user with the ability to inspect the exterior and interior spaces from all angles and distances and perform cross-sections through any meaningful plane.

One of the main challenges of that kind of interactive visualization resides in the geometrical complexity that is present in many historical examples, especially if there is a certain level of detail involved. The use of forms of illumination that reproduce indirect lighting and diffuse reflection, which are needed to properly simulate many interior lighting conditions also increments the difficulty to achieve a fluent simulation. Hence, one of the issues to solve is that of applying a methodology intended to maximize the efficiency of the model in terms of rendering computational cost.

The authors chose the Cathedral of Santiago de Compostela as a case of application. The temple was modeled with a high level of geometrical detail and lit using global illumination, creating a model valid for real-time presentation in order to be examined, explored and manipulated using natural interaction.

Keywords

Real-time architectural visualization Multitactile interaction Natural Interfaces Cross-section Cathedral of Santiago Radiosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lumion. Architectural visualization, http://lumion3d.com/
  2. 2.
  3. 3.
    Epic Games. Unreal Engine, http://www.unrealengine.com/udk/
  4. 4.
    Gaudiosi, J.: Cowboys Stadium. Unreal Engine 3 Brings Architecture to Life, http://www.unrealengine.com/en/showcase/visualization/cowboys_stadium
  5. 5.
    Jacobson, J.H., Hwang, Z.: Unreal Tournament for Immersive Interactive Theater. Communications of the ACM 45(1), 39–42 (2002), doi:10.1145/502269.502292CrossRefGoogle Scholar
  6. 6.
    Johns, R.L.: Unreal Editor as a virtual design instrument in Landscape Architecture Studio. In: 6th International Conference for Information Technologies in Landscape, Dessau, Alemania, pp. 330–336 (2005)Google Scholar
  7. 7.
    Unity Technologies, http://unity3d.com/unity
  8. 8.
    Indraprastha, A.S.: Constructing Virtual Urban Environment Using Game Technology. A Case Study of Tokyo Yaesu Downtown Development Plan. In: 26th eCAADe Proceedings, Antwerpen, Bélgica, pp. 359–366 (2008)Google Scholar
  9. 9.
    Crytek, Visuals, http://www.myCryEngine.com
  10. 10.
    Enodo, S.A.S.: Interactive Virtual Model of the Cluny Abbey, http://mycryengine.com/index.php?conid=69&id=12
  11. 11.
    Lu, K., Hsin-Hou, L., Ting-Han, C., Chi-Fa, F.: Finding the vital houses information using immersive multi-touch interface. In: Proc. 17th International Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA, Hong Kong, pp. 379–386 (2012)Google Scholar
  12. 12.
    Chen, R.I., Schnabel, M.A.: Multi-touch: the future of design interaction. In: Leclereq, P., et al. (eds.) Proc. 14th CAAD Futures Conference, Liège, pp. 557–572 (2011)Google Scholar
  13. 13.
    Edelmann, et al.: The DABR–A Multitouch System for intuitive 3D scene navigation. In: Proc. 3DTV Conference, pp. 1–4 (2009)Google Scholar
  14. 14.
    Hancock, M., Carpendale, S., Cockburn, A.: Shallow-depth 3d interaction: design and evaluation of one, two-and three-touch. In: Proc. CHI 2007, pp. 1147–1156 (2007)Google Scholar
  15. 15.
    Google. Sketchup, http://www.sketchup.com
  16. 16.
    Wall, J.: Recovering Lost Acoustic Spaces: St. Paul’s Cathedral and Paul’s Churchyard in 1622, http://www.digitalstudies.org/ojs/index.php/digital_studies/article/view/251/310
  17. 17.
  18. 18.
    NGrain 3D. How to cross-section 3D model with Constructor 5, NGRAIN’s 3D visualization SDK, http://www.youtube.com/watch?v=RFfTezucHSw
  19. 19.
    Martin, S., Einarsson, P.: Real Time Radiosity Architecture. Advances in Real-Time Rendering. In: SIGGRAPH 2010 (2010), http://dice.se/publications/a-real-time-radiosity-architecture/
  20. 20.
    Conant, K.J.: Arquitectura románica da Catedral de Santiago de Compostela. Ed. Colexio Oficial de Arquitectos de Galicia, Vigo (1983)Google Scholar
  21. 21.
    Franco Taboada, J.A., Tarrio Carrodeguas, S.: As Catedrais de Galicia. Descrición Gráfica. Departamento de Representación e Teoría Arquitectónicas. Ed. Xunta de Galicia, Santiago de Compostela (1999)Google Scholar
  22. 22.
    Taín Guzmán, M.: Trazas, Planos y Proyectos del Archivo de la Catedral de Santiago. Ed. Diputación Provincial de A Coruña (1999)Google Scholar
  23. 23.
    Kuehne, B., Marktz, P. (eds.): OpenSceneGraph Reference Manual v2.2, http://www.osgbooks.com/books/osg_refman22.html
  24. 24.
    Gouraud, H.: Continuous shading of curved surfaces. IEEE Transactions on Computers C-20(6), 623–629 (1971)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luis Antonio Hernández Ibáñez
    • 1
  • Viviana Barneche Naya
    • 1
  1. 1.VideaLAB. Universidade da CoruñaSpain

Personalised recommendations