SentiCircles for Contextual and Conceptual Semantic Sentiment Analysis of Twitter

  • Hassan Saif
  • Miriam Fernandez
  • Yulan He
  • Harith Alani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words’ sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure.


#eswc2014Saif Sentiment analysis Semantics Twitter 


  1. 1.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proc. ACL 2011 Workshop on Languages in Social Media, Portland, Oregon (2011)Google Scholar
  2. 2.
    Aue, A., Gamon, M.: Customizing sentiment classifiers to new domains: A case study. In: Proc. Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (2005)Google Scholar
  3. 3.
    Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Seventh Conference on International Language Resources and Evaluation, Valletta, Malta (May 2010) (retrieved)Google Scholar
  4. 4.
    Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of COLING, Beijing, China (2010)Google Scholar
  5. 5.
    Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)CrossRefGoogle Scholar
  7. 7.
    Cambria, E.: An introduction to concept-level sentiment analysis. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 478–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Cambria, E., Havasi, C., Hussain, A.: Senticnet 2: A semantic and affective resource for opinion mining and sentiment analysis. In: FLAIRS Conference, pp. 202–207 (2012)Google Scholar
  9. 9.
    Diakopoulos, N., Shamma, D.: Characterizing debate performance via aggregated twitter sentiment. In: Proc. 28th Int. Conf. on Human Factors in Computing Systems. ACM (2010)Google Scholar
  10. 10.
    Firth, J.R.: A synopsis of linguistic theory. Studies in Linguistic Analysis (1930-1955)Google Scholar
  11. 11.
    Garcia-Moya, L., Anaya-Sanchez, H., Berlanga-Llavori, R.: Retrieving product features and opinions from customer reviews. IEEE Intelligent Systems 28(3), 19–27 (2013)CrossRefGoogle Scholar
  12. 12.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg? In: Proceedings of the ICWSM, Barcelona, Spain (2011)Google Scholar
  13. 13.
    Liu, B.: Sentiment analysis and subjectivity. Taylor and Francis Group (2010)Google Scholar
  14. 14.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. ICWSM 11, 122–129 (2010)Google Scholar
  15. 15.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of LREC 2010, Valletta, Malta (2010)Google Scholar
  16. 16.
    Saif, H., Fernandez, M., He, Y., Alani, H.: Evaluation datasets for twitter sentiment analysis. In: Proceedings, 1st Workshop on Emotion and Sentiment in Social and Expressive Media (ESSEM) in Conjunction with AI*IA Conference, Turin, Italy (2013)Google Scholar
  17. 17.
    Saif, H., He, Y., Alani, H.: Alleviating data sparsity for twitter sentiment analysis. In: Proc. Workshop on Making Sense of Microposts (#MSM2012) in WWW 2012, Lyon, France (2012)Google Scholar
  18. 18.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of twitter. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with label propagation over lexical links and the follower graph. In: Proceedings of the EMNLP First Workshop on Unsupervised Learning in NLP, Edinburgh, Scotland (2011)Google Scholar
  20. 20.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Computational Linguistics 37(2), 267–307 (2011)CrossRefGoogle Scholar
  21. 21.
    Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proc. 43rd Annual Meeting on Association for Computational Linguistics (2005)Google Scholar
  22. 22.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. American Society for Information Science and Technology 63(1), 163–173 (2012)CrossRefGoogle Scholar
  23. 23.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. American Society for Info. Science and Technology 61(12) (2010)Google Scholar
  24. 24.
    Turney, P., Littman, M.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21, 315–346 (2003)CrossRefGoogle Scholar
  25. 25.
    Turney, P.D., Pantel, P., et al.: From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research 37(1), 141–188 (2010)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada (2005)Google Scholar
  27. 27.
    Wittgenstein, L.: Philosophical Investigations. Blackwell, London (1953, 2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hassan Saif
    • 1
  • Miriam Fernandez
    • 1
  • Yulan He
    • 2
  • Harith Alani
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityUK
  2. 2.School of Engineering and Applied ScienceAston UniversityUK

Personalised recommendations