Advertisement

Metrics-Driven Framework for LOD Quality Assessment

  • Behshid Behkamal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)

Abstract

The main objective of the Linked Open Data paradigm is to crystallize knowledge through the interlinking of already existing but dispersed data. The usefulness of the developed knowledge depends strongly on the quality of the aggregated and published data. Researchers have observed many challenges with the quality of Linked Open Data; therefore, our main objective in this thesis is to propose a metric-driven framework for evaluating the inherent quality dimensions of datasets before they are published as a viable part of the linked open data cloud.

Keywords

#eswcphd2014Behkamal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications of the ACM 45, 211–218 (2002)CrossRefGoogle Scholar
  2. 2.
    Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information quality assessment. Information & Management 40, 133–146 (2002)CrossRefGoogle Scholar
  3. 3.
    Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality assessment and improvement. ACM Computing Surveys (CSUR) 41, 16 (2009)CrossRefGoogle Scholar
  4. 4.
    Naumann, F., Rolker, C.: Assessment methods for information quality criteria. In: 5th Conference on Information Quality, pp. 148–162 (2000)Google Scholar
  5. 5.
    Batini, C., Scannapieca, M.: Data quality: concepts, methodologies and techniques. Springer (2006)Google Scholar
  6. 6.
    Behkamal, B., Kahani, M., Paydar, S., Dadkhah, M., Sekhavaty, E.: Publishing Persian linked data; challenges and lessons learned. In: 5th International Symposium on Telecommunications (IST), pp. 732–737. IEEE (2010)Google Scholar
  7. 7.
    Helfert, M.: Managing and measuring data quality in data warehousing. In: World Multiconference on Systemics, Cybernetics and Informatics, pp. 55–65 (2001)Google Scholar
  8. 8.
    ISO: ISO/IEC 25012- Software engineering - Software product Quality Requirements and Evaluation (SQuaRE). Data quality model (2008) Google Scholar
  9. 9.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S., Hitzler, P.: Quality Assessment Methodologies for Linked Open Data. Submitted to Semantic Web Journal (2013)Google Scholar
  10. 10.
    Wang, R.Y., Strong, D.M., Guarascio, L.M.: Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems 12, 5–33 (1996)zbMATHGoogle Scholar
  11. 11.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: 3rd International Workshop on Linked Data on the Web, LDOW 2010 (2010)Google Scholar
  12. 12.
    Fürber, C., Hepp, M.: Using semantic web resources for data quality management. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 211–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Brank, J., Grobelnik, M., Mladenić, D.: A survey of ontology evaluation techniques (2005)Google Scholar
  14. 14.
  15. 15.
    Vapour online validator, http://validator.linkeddata.org/vapour
  16. 16.
    Jena Eyeball: Command line validator, http://jena.sourceforge.net/Eyeball
  17. 17.
    VRP: Command line validator, http://139.91.183.30:9090/RDF/VRP
  18. 18.
    Dedeke, A.: A Conceptual Framework for Developing Quality Measures for Information Systems. In: 5th International Conference on Information Quality, pp. 126–128 (2000)Google Scholar
  19. 19.
    Naumann, F., Rolker, C.: Do Metadata Models meet IQ Requirements? In: Iternational Conference on Information Quality (IQ), pp. 99–114 (1999)Google Scholar
  20. 20.
    Su, Y., Jin, Z.: A Methodology for Information Quality Assessment in Data Warehousing. In: IEEE International Conference on Communications, ICC 2008, pp. 5521–5525. IEEE (2008)Google Scholar
  21. 21.
    Moraga, C., Moraga, M., Caro, A., Calero, C.: Defining the intrinsic quality of web portal data. In: 8th International Conference on Web Information Systems and Technologies (WEBIST), pp. 374–379 (2012)Google Scholar
  22. 22.
    Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encyclopedia of Software Engineering 2, 528–532 (1994)Google Scholar
  23. 23.
    Hartig, O.: Trustworthiness of data on the web. In: Proceedings of the STI Berlin & CSW PhD Workshop. Citeseer (2008)Google Scholar
  24. 24.
    The code of metrics calculation tool, https://bitbucket.org/behkamal/new-metrics-codes/src
  25. 25.
    Networked Ontology (NeOn) project, http://www.neon-project.org
  26. 26.
    Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A Metrics-Driven Approach for Quality Assessment of Linked Open Data. Accepted in Journal of Theoretical and Applied Electronic Commerce Research (2013)Google Scholar
  27. 27.
    Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach. PWS Publishing Co. (1998)Google Scholar
  28. 28.
    Poels, G., Dedene, G.: Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology 42, 35–46 (2000)CrossRefGoogle Scholar
  29. 29.
    Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering measurement. IEEE Transactions on Software Engineering 22, 68–86 (1996)CrossRefGoogle Scholar
  30. 30.
    Eppler, M.J., Wittig, D.: Conceptualizing information quality: A Review of Information Quality Frameworks from the Last Ten Years. In: 5th International Conference on Information Quality, pp. 83–96 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Behshid Behkamal
    • 1
  1. 1.Ferdowsi University of MashhadMashhadIran

Personalised recommendations