Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile

  • Luca Costabello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


We present PRISSMA, a context-aware presentation layer for Linked Data. PRISSMA extends the Fresnel vocabulary with the notion of mobile context. Besides, it includes an algorithm that determines whether the sensed context is compatible with some context declarations. The algorithm finds optimal error-tolerant subgraph isomorphisms between RDF graphs using the notion of graph edit distance and is sublinear in the number of context declarations in the system.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer, S., Doehring, R., Dietzold, S.: LESS - Template-Based Syndication and Presentation of Linked Data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 211–224. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Carroll, J.J.: Matching RDF Graphs. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 5–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Castano, S., Ferrara, A., Montanelli, S., Varese, G.: Ontology and instance matching. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Information Extraction. LNCS, vol. 6050, pp. 167–195. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Champin, P.-A.: T4R: Lightweight presentation for the Semantic Web. In: Scripting for the Semantic Web, workshop at ESWC (2009)Google Scholar
  5. 5.
    Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)Google Scholar
  6. 6.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. In: IJPRAI, pp. 265–298 (2004)Google Scholar
  7. 7.
    Costabello, L.: DC proposal: PRISSMA, towards mobile adaptive presentation of the web of data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 269–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Dadzie, A.-S., Rowe, M., Petrelli, D.: Hide the Stack: Toward Usable Linked Data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 93–107. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  11. 11.
    Fernéandez, J.M.B., Auer, S., Garcia, R.: The linked data visualization model. In: ISWC (Posters & Demos) (2012)Google Scholar
  12. 12.
    Gandon, F.L.: Generating surrogates to make the semantic web intelligible to end-users. In: Web Intelligence, pp. 352–358 (2005)Google Scholar
  13. 13.
    Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis & Applications 13(1), 113–129 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: PerCom Workshops, pp. 33–37 (2004)Google Scholar
  15. 15.
    Huynh, D., Karger, D.R., Haystack, D.Q.: A platform for creating, organizing and visualizing information using rdf. In: Semantic Web Workshop (2002)Google Scholar
  16. 16.
    Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: A virtual triple approach for similarity-based semantic web tasks. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Schraefel, M.C., Rutledge, L.: User interaction in semantic web research. J. Web Sem. 8(4), 375–376 (2010)CrossRefGoogle Scholar
  18. 18.
    Messmer, B., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (1998)Google Scholar
  19. 19.
    Pietriga, E., Bizer, C., Karger, D.R., Lee, R.: Fresnel: A browser-independent presentation vocabulary for RDF. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 158–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Quan, D., Karger, D.R.: Xenon: An RDF stylesheet ontology. In: Procs of WWW (2005)Google Scholar
  21. 21.
    Riesen, K., Jiang, X., Bunke, H.: Exact and inexact graph matching: Methodology and applications. In: Managing and Mining Graph Data, pp. 217–247 (2010)Google Scholar
  22. 22.
    Rutledge, L., van Ossenbruggen, J., Hardman, L.: Making RDF presentable: integrated global and local semantic web browsing. In: WWW (2005)Google Scholar
  23. 23.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)Google Scholar
  24. 24.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Zou, L., Chen, L., Özsu, M.T., Zhao, D.: Answering pattern match queries in large graph databases via graph embedding. VLDB J. 21(1), 97–120 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luca Costabello
    • 1
  1. 1.InriaSophia AntipolisFrance

Personalised recommendations