Providing Alternative Declarative Descriptions for Entity Sets Using Parallel Concept Lattices

  • Thomas Gottron
  • Ansgar Scherp
  • Stefan Scheglmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


We propose an approach for modifying a declarative description of a set of entities (e.g., a SPARQL query) for the purpose of finding alternative declarative descriptions for the entities. Such a shift in representation can help to get new insights into the data, to discover related attributes, or to find a more concise description of the entities of interest. Allowing the alternative descriptions furthermore to be close approximations of the original entity set leads to more flexibility in finding such insights. Our approach is based on the construction of parallel formal concept lattices over different sets of attributes for the same entities. Between the formal concepts in the parallel lattices, we define mappings which constitute approximations of the extent of the concepts. In this paper, we formalise the idea of two types of mappings between parallel concept lattices, provide an implementation of these mappings and evaluate their ability to find alternative descriptions in a scenario of several real-world RDF data sets. In this scenario we use descriptions for entities based on RDF classes and seek for alternative representations based on properties associated with the entities.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, N., Scheglmann, S., Gottron, T.: LinDA: A service infrastructure for linked data analysis and provision of data statistics. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 225–230. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual knowledge processing with formal concept analysis and ontologies. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Curé, O., Jeansoulin, R.: An fca-based solution for ontology mediation. In: Proceedings of the 2nd International Workshop on Ontologies and Information Systems for the Semantic Web, ONISW 2008, pp. 39–46. ACM, New York (2008)Google Scholar
  4. 4.
    Ding, L., Finin, T.W.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Fan, L., Xiao, T.: An automatic method for ontology mapping. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 661–669. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis and logical information systems. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 166–180. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Franconi, E., Kerhet, V., Ngo, N.: Exact query reformulation with first-order ontologies and databases. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 202–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Gottron, T., Knauf, M., Scheglmann, S., Scherp, A.: A systematic investigation of explicit and implicit schema information on the linked open data cloud. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 228–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Gottron, T., Scherp, A., Krayer, B., Peters, A.: Lodatio: Using a schema-level index to support users in finding relevant sources of linked data. In: KCAP, pp. 105–108. ACM (2013)Google Scholar
  10. 10.
    Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S.: Formal concept discovery in semantic web data. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 164–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Lindig, C.: Mining patterns and violations using concept analysis. Tech. rep., Saarland University, Software Engineering Chair (2007)Google Scholar
  12. 12.
    Meij, E., Bron, M., Hollink, L., Huurnink, B., de Rijke, M.: Learning semantic query suggestions. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 424–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5-6), 199–204 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies of linked data sources. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Schaible, J., Gottron, T., Scheglmann, S., Scherp, A.: Lover: support for modeling data using linked open vocabularies. In: Guerrini, G. (ed.) EDBT/ICDT Workshops, pp. 89–92. ACM (2013)Google Scholar
  17. 17.
    Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, pp. 225–234 (2001)Google Scholar
  18. 18.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data & Knowledge Engineering 42(2), 189–222 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tran, T., Ma, Y., Cheng, G.: Pay-less entity consolidation: exploiting entity search user feedbacks for pay-as-you-go entity data integration. In: Web Science, pp. 317–325. ACM (2012)Google Scholar
  20. 20.
    Völker, J., Rudolph, S.: Lexico-logical acquisition of OWL DL axioms. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 62–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Penin, T., Xu, K., Chen, J., Sun, X., Fu, L., Liu, Q., Yu, Y., Tran, T., Haase, P., Studer, R.: Hermes: a travel through semantics on the data web. In: SIGMOD, pp. 1135–1138. ACM (2009)Google Scholar
  22. 22.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 314–339. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Wille, R.: Conceptual graphs and formal concept analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Gottron
    • 1
  • Ansgar Scherp
    • 2
  • Stefan Scheglmann
    • 1
  1. 1.WeST – Institute for Web Science and TechnologiesUniversity of Koblenz-LandauKoblenzGermany
  2. 2.Leibniz Information Center for EconomicsKiel UniversityKielGermany

Personalised recommendations