Dedalo: Looking for Clusters Explanations in a Labyrinth of Linked Data

  • Ilaria Tiddi
  • Mathieu d’Aquin
  • Enrico Motta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


We present Dedalo, a framework which is able to exploit Linked Data to generate explanations for clusters. In general, any result of a Knowledge Discovery process, including clusters, is interpreted by human experts who use their background knowledge to explain them. However, for someone without such expert knowledge, those results may be difficult to understand. Obtaining a complete and satisfactory explanation becomes a laborious and time-consuming process, involving expertise in possibly different domains. Having said so, not only does the Web of Data contain vast amounts of such background knowledge, but it also natively connects those domains. While the efforts put in the interpretation process can be reduced with the support of Linked Data, how to automatically access the right piece of knowledge in such a big space remains an issue. Dedalo is a framework that dynamically traverses Linked Data to find commonalities that form explanations for items of a cluster. We have developed different strategies (or heuristics) to guide this traversal, reducing the time to get the best explanation. In our experiments, we compare those strategies and demonstrate that Dedalo finds relevant and sophisticated Linked Data explanations from different areas.


#eswc2014Tiddi Linked Data Hypothesis Generation Knowledge Discovery 


  1. 1.
    Brisson, L., Collard, M., Pasquier, N.: Improving the knowledge discovery process using ontologies. In: Proceedings of the IEEE MCD International Workshop on Mining Complex Data, pp. 25–32 (November 2005)Google Scholar
  2. 2.
    Brisson, L., Collard, M.: How to Semantically Enhance a Data Mining Process? In: Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems. LNBIP, vol. 19, pp. 103–116. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    d’Aquin, M., Jay, N.: Interpreting Data Mining Results with Linked Data for Learning Analytics: Motivation, Case Study and Direction. In: LAK 2013 (2013)Google Scholar
  4. 4.
    Dehmer, M., Mowshowitz, A.: Generalized graph entropies. Complexity 17(2), 45–50 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Computing Surveys (CSUR) 38(3), 9 (2006)CrossRefGoogle Scholar
  6. 6.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web, pp. 48–57. ACM (May 2003)Google Scholar
  7. 7.
    King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Clare, A.: The automation of science. Science 324(5923), 85–89 (2009)CrossRefGoogle Scholar
  8. 8.
    Lavrač, N., Vavpetič, A., Soldatova, L., Trajkovski, I., Novak, P.K.: Using ontologies in semantic data mining with SEGS and g-SEGS. In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp. 165–178. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Lisi, F.A.: Inductive Logic Programming in Databases: From Datalog to DL+log. Theory and Practice of Logic Programming 10(3), 331–359 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lisi, F.A., Esposito, F.: On ontologies as prior conceptual knowledge in inductive logic programming. In: Berendt, B., Mladenič, D., de Gemmis, M., Semeraro, G., Spiliopoulou, M., Stumme, G., Svátek, V., Železný, F. (eds.) Knowledge Discovery Enhanced with Semantic and Social Information. SCI, vol. 220, pp. 3–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association rules using ontologies. IEEE Transactions on Knowledge and Data Engineering 22(6), 784–797 (2010)CrossRefGoogle Scholar
  12. 12.
    Moss, L., Sleeman, D., Sim, M., Booth, M., Daniel, M., Donaldson, L., Kinsella, J.: Ontology-driven hypothesis generation to explain anomalous patient responses to treatment. Knowledge-Based Systems 23(4), 309–315 (2010)CrossRefGoogle Scholar
  13. 13.
    Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University of Manchester, UK (2006)Google Scholar
  14. 14.
    Mowshowitz, A., Dehmer, M.: Entropy and the complexity of graphs revisited. Entropy 14(3), 559–570 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal of Logic Programming 19, 629–679 (1994)CrossRefGoogle Scholar
  16. 16.
    Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using Linked Data to Interpret Tables. In: COLD 2010 (2010)Google Scholar
  17. 17.
    Paulheim, H.: Generating Possible Interpretations for Statistics from Linked Open Data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Paulheim, H.: Exploiting Linked Open Data as Background Knowledge in Data Mining. In: CEUR Workshop Proceedings DMoLD 2013 Collocated with ECMLPKDD 2013, pp. 1–10. RWTH, Aachen (2013)Google Scholar
  19. 19.
    Racunas, S.A., Shah, N.H., Albert, I., Fedoroff, N.V.: HyBrow: a prototype system for computer-aided hypothesis evaluation. Bioinformatics 20(suppl. 1), i257–i264 (2004)Google Scholar
  20. 20.
    Roos, M., Marshall, M.S., Gibson, A., Schuemie, M., Meij, E., Katrenko, S., Adriaans, P.: Structuring and extracting knowledge for the support of hypothesis generation in molecular biology. BMC Bioinformatics 10(suppl. 10), S9 (2009)Google Scholar
  21. 21.
    Shannon, C.: A Mathematical Theory of Communication. Bell System Technical Journal 27(3), 379–423 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tiddi, I., d’Aquin, M., Motta, E.: Explaining Clusters with Inductive Logic Programming and Linked Data. In: 12th International Semantic Web Conference (2013)Google Scholar
  23. 23.
    Tiddi, I.: Explaining data patterns using background knowledge from Linked Data. In: ISWC 2013 Doctoral Consortium, Sydney, Australia (2013)Google Scholar
  24. 24.
    Zapilko, B., Harth, A., Mathiak, B.: Enriching and analysing statistics with Linked Open Data. In: Eurostat (ed.) NTTS - Conference on New Techniques and Technologies for Statistics. S8 Paper 1, Brüssel (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ilaria Tiddi
    • 1
  • Mathieu d’Aquin
    • 1
  • Enrico Motta
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityUnited Kingdom

Personalised recommendations