A Framework for Iterative Signing of Graph Data on the Web

  • Andreas Kasten
  • Ansgar Scherp
  • Peter Schauß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


Existing algorithms for signing graph data typically do not cover the whole signing process. In addition, they lack distinctive features such as signing graph data at different levels of granularity, iterative signing of graph data, and signing multiple graphs. In this paper, we introduce a novel framework for signing arbitrary graph data provided, e g., as RDF(S), Named Graphs, or OWL. We conduct an extensive theoretical and empirical analysis of the runtime and space complexity of different framework configurations. The experiments are performed on synthetic and real-world graph data of different size and different number of blank nodes. We investigate security issues, present a trust model, and discuss practical considerations for using our signing framework.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML signature syntax and processing. W3C (2008),
  3. 3.
    Beckett, D.: N-Triples. W3C (2001),
  4. 4.
    Beckett, D.: RDF/XML syntax specification. W3C (2004),
  5. 5.
    Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Berners-Lee, T., Connolly, D.: Notation3 (N3). W3C (2011),
  7. 7.
    Bizer, C., Cyganiak, R.: TriG: RDF Dataset Language. W3C (2013),
  8. 8.
    Bundesrepublik Deutschland. §86 StGB (1975),
  9. 9.
    Carroll, J.J.: Signing RDF graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: WWW, pp. 613–622. ACM (2005)Google Scholar
  11. 11.
    Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, T.: Internet X.509 public key infrastructure. RFC 5280, IETF (May 2008)Google Scholar
  12. 12.
    Fisteus, J.A., García, N.F., Fernández, L.S., Kloos, C.D.: Hashing and canonicalizing Notation 3 graphs. JCSS 76(7), 663–685 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Freier, A.O., Karlton, P., Kocher, P.C.: The secure sockets layer (SSL) protocol version 3.0. RFC 6101, IETF (2011)Google Scholar
  14. 14.
    Kasten, A., Scherp, A.: Towards a configurable framework for iterative signing of distributed graph data. In: PrivOn (2013)Google Scholar
  15. 15.
    Knuth, D.E.: Sorting and searching, 2nd edn. Art of Computer Programming, vol. 3. Addison-Wesley (1998)Google Scholar
  16. 16.
    Melnik, S.: RDF API draft (2001),
  17. 17.
    Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 web ontology language XML serialization. W3C (2009),
  18. 18.
    NIST. Recommendation for cryptographic key generation. SP 800-133 (2012),
  19. 19.
    NIST. Recommendation for key management pt. 1. SP 800-57 (2012),
  20. 20.
    NIST. Secure hash standard. FIPS PUB 180-4 (March 2012),
  21. 21.
    NIST. Digital signature standard (DSS). FIPS PUB 186-4 (June 2013),
  22. 22.
    Patel-Schneider, P.F., Motik, B.: OWL 2 web ontology language mapping to RDF graphs. W3C (2012),
  23. 23.
    Perlman, R.: An overview of pki trust models. IEEE Network 13(6), 38–43 (1999)CrossRefGoogle Scholar
  24. 24.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. CACM 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Sayers, C., Karp, A.H.: Computing the digest of an RDF graph. Technical report, HP Laboratories (2004)Google Scholar
  26. 26.
    Sayers, C., Karp, A.H.: RDF graph digest techniques and potential applications. Technical report, HP Laboratories (2004)Google Scholar
  27. 27.
    Schneier, B.: Protocol Building Blocks. In: Applied Cryptography. Wiley (1996)Google Scholar
  28. 28.
    Schneier, B.: Key Management. In: Applied Cryptography. Wiley (1996)Google Scholar
  29. 29.
    Schneier, B.: Security Needs. In: Secrets and Lies. Wiley (2004)Google Scholar
  30. 30.
    Stanton, P.T., McKeown, B., Burns, R., Ateniese, G.: FastAD: An authenticated directory for billions of objects. ACM SIGOPS 44(1), 45–49 (2010)CrossRefGoogle Scholar
  31. 31.
    Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley (2002)Google Scholar
  32. 32.
    Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: Signing individual fragments of an RDF graph. In: WWW, pp. 1020–1021. ACM (2005)Google Scholar
  33. 33.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Zimmermann, P.R.: The official PGP user’s guide. MIT Press (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Kasten
    • 1
  • Ansgar Scherp
    • 2
  • Peter Schauß
    • 1
  1. 1.University of Koblenz-LandauKoblenzGermany
  2. 2.Kiel University and Leibniz Information Centre for EconomicsKielGermany

Personalised recommendations