Multihop Node Authentication Mechanisms for Wireless Sensor Networks

  • Ismail Mansour
  • Damian Rusinek
  • Gérard Chalhoub
  • Pascal Lafourcade
  • Bogdan Ksiezopolski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8487)


Designing secure authentication mechanisms in wireless sensor networks in order to associate a node to a secure network is not an easy task due to the limitations of this type of networks. In this paper, we propose different multihop node authentication protocols for wireless sensor networks. For each protocol, we provide a formal proof using Scyther to verify the security of our proposals. We also provide implementation results in terms of execution time consumption obtained by real measurements on TelosB motes. These protocols offer different levels of quality of protection depending on the design of the protocol itself. Finally, we evaluate the overhead of protection of each solution, using AQoPA tool, by varying the security parameters and studying the effect on execution time overhead of each protocol for several network sizes.


Authentication Wireless Sensor Network Security Quality of Protection Multihop Formal Verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-mahmud, A., Akhtar, R.: Secure sensor node authentication in wireless sensor networks. International Journal of Computer Applications 46(4), 10-17 (2012), Published by Foundation of Computer Science, New York, USAGoogle Scholar
  2. 2.
    Armando, A., et al.: The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: IEEE Symposium on Security and Privacy, Oakland, California, pp. 86–100 ( May 2004)Google Scholar
  4. 4.
    Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cremers, C.J.F., Lafourcade, P., Nadeau, P.: Comparing state spaces in automatic security protocol analysis. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to Practical Security. LNCS, vol. 5458, pp. 70–94. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)Google Scholar
  7. 7.
    Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Transactions on Wireless Communications 8(3), 1086–1090 (2009)CrossRefGoogle Scholar
  8. 8.
    Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of the 22Nd Annual Symposium on Foundations of Computer Science, SFCS 1981, pp. 350–357 (1981)Google Scholar
  9. 9.
    Han, K., Shon, T.: Sensor authentication in dynamic wireless sensor network environments. International Journal of RFID Security and Cryptography (2012)Google Scholar
  10. 10.
    Jürjens, J.: Secure systems development with UML. Springer (2005)Google Scholar
  11. 11.
    Kavitha, T., Sridharan, D.: Security vulnerabilities in wireless sensor networks: A survey. Journal of Information Assurance and Security 5, 31–34 (2010)Google Scholar
  12. 12.
    Ksiezopolski, B.: QoP-ML: Quality of protection modelling language for cryptographic protocols. Computers & Security 31(4), 569–596 (2012)CrossRefGoogle Scholar
  13. 13.
    Ksiezopolski, B., Kotulski, Z.: Adaptable security mechanism for dynamic environments. Computers & Security, pp. 246–255 (2007)Google Scholar
  14. 14.
    Ksiezopolski, B., Kotulski, Z., Szalachowski, P.: Adaptive approach to network security. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 233–241. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Ksiezopolski, B., Kotulski, Z., Szalachowski, P.: On qop method for ensuring availability of the goal of cryptographic protocols in the real-time systems. In: European Teletraffic Seminar 2011 (2011)Google Scholar
  16. 16.
    LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.H.: Adversary-driven state-based system security evaluation. In: Proceedings of the 6th International Workshop on Security Measurements and Metrics, MetriSec 2010, pp. 5:1–5:9. ACM (2010)Google Scholar
  17. 17.
    Lindskog, S.: Modeling and Tuning Security from a Quality of Service Perspective. PhD thesis, Chalmers University of Technology (2005)Google Scholar
  18. 18.
    Liu, A., Ning, N.: Tinyecc: A configurable library for elliptic curve cryptography in wireless sensor networks. In: 7th International Conference on Information Processing in Sensor Networks, pp. 245–256 (April 2008)Google Scholar
  19. 19.
    Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using fdr. Software - Concepts and Tools 17(3), 93–102 (1996)Google Scholar
  20. 20.
    Luo, A., Lin, C., Wang, K., Lei, L., Liu, C.: Quality of protection analysis and performance modeling in ip multimedia subsystem. Comput. Commun. 32(11), 1336–1345 (2009)CrossRefGoogle Scholar
  21. 21.
    Manica, N., Saloni, M., Toldo, P.: WSN - secure comunications with AES algoritms. University of Trento - Faculty of Computer Science (2008)Google Scholar
  22. 22.
    Mansour, I., Chalhoub, G., Misson, M.: Security architecture for multi-hop wireless sensor networks. CRC Press Book (2014)Google Scholar
  23. 23.
    Mansour, I., Lafourcade, P.: Scyther code of our authentication protocols (December 2013),
  24. 24.
    Petriu, D.C., Woodside, C.M., Petriu, D.B., Xu, J., Israr, T., Georg, G., France, R., Bieman, J.M., Houmb, S.H., Jürjens, J.: Performance analysis of security aspects in uml models. In: Proceedings of the 6th International Workshop on Software and Performance, WOSP 2007, pp. 91–102. ACM (2007)Google Scholar
  25. 25.
    Prérez, V.B., González, P., Cabaleiro, J.C., Heras, D.B., Pena, T.F., Pombo, J.J., Rivera, F.F.: Avispa: Visualizing the performance prediction of parallel iterative solvers. Future Generation Comp. Syst. 19(5), 721–733 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Research. Standards for efficient cryptography, sec 1: Elliptic curve cryptography (September 2000)Google Scholar
  27. 27.
    Sun, Y., Kumar, A.: Quality-of-protection (qop): A quantitative methodology to grade security services. In: ICDCS Workshops, pp. 394–399. IEEE Computer Society Press (2008)Google Scholar
  28. 28.
    Yeh, H.-L., Chen, T.-H., Liu, P.-C., Kim, T.-H., Wei, H.-W.: A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors 11(5) (2011)Google Scholar
  29. 29.
    Zhang, J., Shankaran, R., Orgun, M.A., Sattar, A., Varadharajan, V.: A dynamic authentication scheme for hierarchical wireless sensor networks. In: Sénac, P., Ott, M., Seneviratne, A. (eds.) MobiQuitous 2010. LNICST, vol. 73, pp. 186–197. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ismail Mansour
    • 1
    • 2
  • Damian Rusinek
    • 3
  • Gérard Chalhoub
    • 1
    • 2
  • Pascal Lafourcade
    • 1
    • 2
  • Bogdan Ksiezopolski
    • 3
    • 4
  1. 1.Clermont Université, Université d’Auvergne, LIMOSClermont-FerrandFrance
  2. 2.CNRS, UMR 6158, LIMOSAubièreFrance
  3. 3.Institute of Computer ScienceMaria Curie-Sklodowska UniversityLublinPoland
  4. 4.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations