Advertisement

A Multipath Extension for the Heterogeneous Technology Routing Protocol

  • Josias LimaJr.
  • Thiago Rodrigues
  • Rodrigo Melo
  • Gregório Correia
  • Djamel H. Sadok
  • Judith Kelner
  • Eduardo Feitosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8487)

Abstract

In recent years we have witnessed the emergence of new access techniques that use both wireless technologies and self-organizing features. Their combination eliminates the need for using pre-defined wired structures and prior configurations. In this paper, we propose an extension by enabling multipath routing over our Heterogeneous Technologies Routing (HTR) Framework. HTR Multipath routing offers several benefits such as load balancing, fault tolerance, routing loop prevention, energy-conservation, low end-to-end delay, congestion avoidance, among others. This work performs a comparative analysis of the proposed HTR extension, with the baseline HTR, and the widely-used Optimized Link State Routing (OLSR) protocol. The evaluation is validated through the simulation of heterogeneous technologies such as WiMAX, 3GPP LTE and Wi-Fi. Results show that our proposal effectively improves the data delivery ratio and reduces the end-to-end delay without major impact on network energy consumption.

Keywords

Wireless Mobile Communication Mobile Ad hoc Networks (MANET) Heterogeneous technologies multipath routing WiMAX Wi-Fi LTE simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, J., Luo, S., Das, S., McAuley, T., Patel, M., Staikos, A., Gerla, M.: An Integrated Framework for Seamless Soft Handoff in Ad Hoc Networks. In: MILCOM 2006, pp. 1–7. IEEE (2006)Google Scholar
  2. 2.
    Souto, E., Aschoff, R., Lima Junior, J., Melo, R., Sadok, D., Kelner, J.: HTR: A framework for interconnecting wireless heterogeneous devices. In: 2012 IEEE Consumer Communications and Networking Conference (CCNC), pp. 645–649 (2012)Google Scholar
  3. 3.
    Calafate, C.M.T., Garcia, R.G., Manzoni, P.: Optimizing the implementation of a MANET routing protocol in a heterogeneous environment. In: Proceedings of the Eighth IEEE Symposium on Computers and Communications, ISCC 2003, pp. 217–222. IEEE Comput. Soc. (2003)Google Scholar
  4. 4.
    Liu, C., Kaiser, J.: A Survey of Mobile Ad Hoc network Routing Protocols (2003)Google Scholar
  5. 5.
    Abolhasan, M., Wysocki, T., Dutkiewicz, E.: A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks 2, 1–22 (2004)CrossRefGoogle Scholar
  6. 6.
    Crowcroft, J.: Mobile Ad-hoc Intern-domain Networking. In: Annual Conference of ITA (2007)Google Scholar
  7. 7.
    Chau, C., Crowcroft, J., Lee, K., Wong, S.H.Y.: IDRM: Inter-Domain Routing Protocol for Mobile Ad Hoc Networks. Computer (2008)Google Scholar
  8. 8.
    Schmid, S., Eggert, L., Brunner, M., Quittek, J.: Towards autonomous network domains. In: Proc. IEEE 24th Annu. Jt. Conf. IEEE Comput. Commun. Soc., pp. 2847–2852 (2005)Google Scholar
  9. 9.
    Boulicault, N., Chelius, G., Fleury, E.: Ana4: a 2.5 Framework for Deploying Real Multi-hop Ad hoc and Mesh Networks. Science (80-X ), 1–24 (2006)Google Scholar
  10. 10.
    Untz, V., Heusse, M., Rousseau, F., Duda, A.: Lilith: an interconnection architecture based on label switching for spontaneous edge networks. In: The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, pp. 146–151. IEEE (2004)Google Scholar
  11. 11.
    Jacinto, B., Vilaça, L., Kelner, J.: 3D routing: a protocol for emergency scenarios. In: Proc. 6th Int. Wirel. Commun. Mob. Comput. Conf., pp. 519–523 (2010)Google Scholar
  12. 12.
    Rosen, E., Viswanathan, A.: RFC 3031 - Multiprotocol Label Switching Architecture (2001), http://tools.ietf.org/html/rfc3031
  13. 13.
    Tarique, M., Tepe, K.E., Adibi, S., Erfani, S.: Survey of multipath routing protocols for mobile ad hoc networks. J. Netw. Comput. Appl. 32, 1125–1143 (2009)CrossRefGoogle Scholar
  14. 14.
    Marina, M.K., Das, S.R.: On-demand multipath distance vector routing in ad hoc networks. In: Proceedings Ninth International Conference on Network Protocols, ICNP 2001, pp. 14–23. IEEE Comput. Soc. (2001)Google Scholar
  15. 15.
    Perkins, C., Royer, E., Das, S.: RFC 3561 - Ad hoc On-Demand Distance Vector (AODV) Routing (2003), http://tools.ietf.org/html/rfc3561
  16. 16.
    Leung, R., Poon, E., Chan, A.-L.C.: MP-DSR: a QoS-aware multi-path dynamic source routing protocol for wireless ad-hoc networks. In: Proceedings LCN 2001 26th Annual IEEE Conference on Local Computer Networks, pp. 132–141. IEEE Comput. Soc. (2001)Google Scholar
  17. 17.
    Maltz, D., Hu, Y., Johnson, D.: RFC 4728 - The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4 (2007), http://tools.ietf.org/html/rfc4728
  18. 18.
    Yi, J., Adnane, A., David, S., Parrein, B.: Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks 9, 28–47 (2011)CrossRefGoogle Scholar
  19. 19.
    Clausen, T., Jacquet, P.: RFC 3626 - Optimized Link State Routing Protocol, OLSR (2003), http://www.ietf.org/rfc/rfc3626.txt
  20. 20.
    Lee, S.-J., Gerla, M.: Split multipath routing with maximally disjoint paths in ad hoc networks. In: ICC 2001, IEEE International Conference on Communications, Conference Record (Cat. No.01CH37240), pp. 3201–3205. IEEE (2001)Google Scholar
  21. 21.
    Aschoff, R., Souto, E., Kelner, J., Sadok, D.: (WO2011009177) Network Address Allocation Method (2011)Google Scholar
  22. 22.
    Devi, R., Rao, S.: QoS Enhanced Hybrid Multipath Routing Protocol for Mobile Adhoc Networks. Int. J. Distrib. Parallel Syst. 3, 89–105 (2012)CrossRefGoogle Scholar
  23. 23.
    Yi, J., Cizeron, E., Hamma, S., Parrein, B.: NET 08-2 - Simulation and Performance Analysis of MP-OLSR for Mobile Ad Hoc Networks. In: 2008 IEEE Wirel. Commun. Netw. Conf., pp. 2235–2240 (2008)Google Scholar
  24. 24.
    Mueller, S., Tsang, R.P., Ghosal, D.: Multipath routing in mobile ad hoc networks: Issues and challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003. LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Panasonic: Panasonic CGR18650DA (Lithium Ion Batteries: Individual Data Sheet) (2007)Google Scholar
  26. 26.
    Texas Instruments: CC2420 2.4 GHz IEEE 802.15. 4/ZigBee-ready RF Transceiver (2004)Google Scholar
  27. 27.
    Atmel: Atmel AT86RF535B (3.5 Ghz WiMAX Transceiver) (2007)Google Scholar
  28. 28.
    Infineon: Infineon BGA777L7 Data Sheet (2009)Google Scholar
  29. 29.
    Pareit, D., Petrov, V., Lannoo, B., Tanghe, E., Joseph, W., Moerman, I., Demeester, P., Martens, L.: A Throughput Analysis at the MAC Layer of Mobile WiMAX. In: 2010 IEEE Wireless Communication and Networking Conference, pp. 1–6. IEEE (2010)Google Scholar
  30. 30.
    Shapiro, S.S., Wilk, M.B.: An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52, 591–611 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Josias LimaJr.
    • 1
  • Thiago Rodrigues
    • 1
  • Rodrigo Melo
    • 1
  • Gregório Correia
    • 1
  • Djamel H. Sadok
    • 1
  • Judith Kelner
    • 1
  • Eduardo Feitosa
    • 2
  1. 1.Federal University of Pernambuco (UFPE)RecifeBrazil
  2. 2.Federal University of Manaus (UFAM)ManausBrazil

Personalised recommendations