Postprandial Inflammation: Targeting Glucose and Lipids

  • Marijke A. de Vries
  • Boudewijn Klop
  • Hans W. Janssen
  • Tjin L. Njo
  • Elsbeth M. Westerman
  • Manuel Castro Cabezas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 824)


Many risk factors have been identified as being responsible for the process of atherogenesis. Several of these risk factors are related to inflammation, which is an obligatory feature of the atherosclerotic plaque. Increasing evidence suggests that postprandial lipoproteins and glucose may be involved in the inflammatory process preceding the development of atherosclerosis. During the postprandial situation, remnants of chylomicrons and very low-density lipoproteins bind to circulating leukocytes and endothelial cells, leading to a state of acute activation with the expression of integrins on different cells, the generation of oxidative stress, production of cytokines and complement activation. Elevated plasma glucose levels may also induce leukocyte activation in humans. In addition, advanced glycation end products, formed during hyperglycemia, cause inflammation and endothelial damage. This chain of events results in a situation of acute inflammation causing endothelial dysfunction, which may be one of the earliest defects in atherogenesis. Interestingly, while this may occur several times each day after each meal, there is only limited information on the contribution of different nutrients on the postprandial inflammatory processes. In this review, we will focus on the available evidence and we will discuss the role of lifestyle and pharmaceutical interventions in modulating postprandial inflammation.


Adiposity Apolipoprotein B48 Atherosclerosis Chylomicron Neutrophil Triglycerides 


  1. 1.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000;321:199–204.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 1974;290:1275–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomassetti V, Drago G, et al. Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J. 2000;21:1081–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Muscari A, Bozzoli C, Puddu GM, Sangiorgi Z, Dormi A, Rovinetti C, et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med. 1995;98:357–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Alipour A, van Oostrom AJHHM, Izraeljan A, Verseyden C, Collins JM, Frayn KN, et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol. 2008;28:792–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Oostrom AJHHM, Rabelink TJ, Verseyden C, Sijmonsma TP, Plokker HWM, De Jaegere PPT, et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis. 2004;177:175–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Sampson MJ, Davies IR, Brown JC, Ivory K, Hughes DA. Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. Arterioscler Thromb Vasc Biol. 2002;22:1187–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab. 2009;296:E1183–94.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wang TY, Liu M, Portincasa P, Wang DQ-H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Investig. 2013;43:1203–23.Google Scholar
  13. 13.
    Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92:1061–85.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J, Siddiqi SA, et al. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res. 2010;51:1918–28.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mansbach CM, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293:G645–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Mansbach CM, Siddiqi SA. The biogenesis of chylomicrons. Annu Rev Physiol. 2010;72:315–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Brunzell JD, Hazzard WR, Porte D, Bierman EL. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest. 1973;52:1578–85.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Nakajima K, Nakano T, Tokita Y, Nagamine T, Inazu A, Kobayashi J, et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412:1306–18.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Rustaeus S, Lindberg K, Stillemark P, Claesson C, Asp L, Larsson T, et al. Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. J Nutr. 1999;129:463S–6.PubMedGoogle Scholar
  20. 20.
    Olofsson S-O, Borén J. Apolipoprotein B secretory regulation by degradation. Arterioscler Thromb Vasc Biol. 2012;32:1334–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Bjorkegren J, Packard CJ, Hamsten A, Bedford D, Caslake M, Foster L, et al. Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res. 1996;37:76–86.PubMedGoogle Scholar
  22. 22.
    Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, et al. The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis. 2010;211:1–8.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wang YI, Bettaieb A, Sun C, Deverse JS, Radecke CE, Mathew S, et al. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS One. 2013;8:e78322.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, et al. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol. 2011;31:160–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Higgins LJ, Rutledge JC. Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Curr Atheroscler Rep. 2009;11:199–205.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Oostrom AJHHM, Sijmonsma TP, Verseyden C, Jansen EHJM, de Koning EJP, Rabelink TJ, et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res. 2003;44:576–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–92.PubMedGoogle Scholar
  28. 28.
    Wanten G, van Emst-De Vries S, Naber T, Willems P. Nutritional lipid emulsions modulate cellular signaling and activation of human neutrophils. J Lipid Res. 2001;42:428–36.PubMedGoogle Scholar
  29. 29.
    Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, et al. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis. 2011;21:871–8.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes. 1988;37:832–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Oostrom AJHHM, Plokker HWM, van Asbeck BS, Rabelink TJ, van Kessel KPM, Jansen EHJM, et al. Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis. 2006;185:331–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Koo C, Wernette-Hammond ME, Garcia Z, Malloy MJ, Uauy R, East C, et al. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest. 1988;81:1332–40.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bermudez B, Lopez S, Varela LM, Ortega A, Pacheco YM, Moreda W, et al. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages. J Nutr. 2012;142:227–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm. 2013;2013:152786.CrossRefGoogle Scholar
  35. 35.
    Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arter Thromb Vasc Biol. 2011;31:2090–7.CrossRefGoogle Scholar
  36. 36.
    De M Bandeira S, da Fonseca LJS, da S Guedes G, Rabelo LA, Goulart MOF, Vasconcelos SML. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci. 2013;14:3265–84.PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Deopurkar R, Ghanim H, Friedman J, Abuaysheh S, Sia CL, Mohanty P, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33:991–7.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Wang L, Guo L, Zhang L, Zhou Y, He Q, Zhang Z, et al. Effects of glucose load and nateglinide intervention on endothelial function and oxidative stress. J Diabetes Res. 2013;2013:849295.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106:1319–31.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol. 1994;267:E369–79.PubMedGoogle Scholar
  41. 41.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889–97.PubMedGoogle Scholar
  43. 43.
    Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1:1.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt AM, Yan SD, Brett J, Mora R, Nowygrod R, Stern D. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products. J Clin Invest. 1993;91:2155–68.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Fukami K, Yamagishi S-I, Okuda S. Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des. 2014;20:2395–402.PubMedCrossRefGoogle Scholar
  46. 46.
    Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem. 2000;275:25781–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198:1507–15.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Acosta J, Hettinga J, Flückiger R, Krumrei N, Goldfine A, Angarita L, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A. 2000;97:5450–5.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Oka S-I, Hsu C-P, Sadoshima J. Regulation of cell survival and death by pyridine nucleotides. Circ Res. 2012;111:611–27.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Burton-Freeman B, Linares A, Hyson D, Kappagoda T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J Am Coll Nutr. 2010;29:46–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Sardo CL, Kitzmiller JP, Apseloff G, Harris RB, Roe DJ, Stoner GD, et al. An open-label randomized crossover trial of lyophilized black raspberries on postprandial inflammation in older overweight males: a pilot study. Am J Ther. 2013. Epub ahead of print.Google Scholar
  52. 52.
    Yang J, Han Y, Chen C, Sun H, He D, Guo J, et al. EGCG attenuates high glucose-induced endothelial cell inflammation by suppression of PKC and NF-κB signaling in human umbilical vein endothelial cells. Life Sci. 2013;92:589–97.PubMedCrossRefGoogle Scholar
  53. 53.
    Ghanim H, Sia CL, Upadhyay M, Upadhyay M, Korzeniewski K, Viswanathan P, et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am J Clin Nutr. 2010;91:940–9.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56:622–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, Bustos C, Ortego M, Hernández-Presa MA, et al. Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation. 2000;102:1020–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Bellido C, López-Miranda J, Blanco-Colio LM, Pérez-Martínez P, Muriana FJ, Martín-Ventura JL, et al. Butter and walnuts, but not olive oil, elicit postprandial activation of nuclear transcription factor kappaB in peripheral blood mononuclear cells from healthy men. Am J Clin Nutr. 2004;80:1487–91.PubMedGoogle Scholar
  57. 57.
    Camargo A, Delgado-Lista J, Garcia-Rios A, Cruz-Teno C, Yubero-Serrano EM, Perez-Martinez P, et al. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br J Nutr. 2012;108:500–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Li Z, Wong A, Henning SM, Zhang Y, Jones A, Zerlin A, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013;4:384–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Bloomer RJ, Fisher-Wellman KH. Postprandial oxidative stress in exercise trained and sedentary cigarette smokers. Int J Environ Res Public Health. 2009;6:579–91.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Clegg M, McClean C, Davison WG, Murphy HM, Trinick T, Duly E, et al. Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit. Lipids Heal Dis. 2007;6:30.CrossRefGoogle Scholar
  61. 61.
    Dixon NC, Hurst TL, Talbot DCS, Tyrrell RM, Thompson D. Active middle-aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status. J Appl Physiol. 2009;107:63–8.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Plat J, Jellema A, Ramakers J, Mensink RP. Weight loss, but not fish oil consumption, improves fasting and postprandial serum lipids, markers of endothelial function, and inflammatory signatures in moderately obese men. J Nutr. 2007;137:2635–40.PubMedGoogle Scholar
  63. 63.
    Corpeleijn E, Saris WHM, Jansen EHJM, Roekaerts PMHJ, Feskens EJM, Blaak EE. Postprandial interleukin-6 release from skeletal muscle in men with impaired glucose tolerance can be reduced by weight loss. J Clin Endocrinol Metab. 2005;90:5819–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Halkes CJ, van Dijk H, de Jaegere PP, Plokker HW, van Der Helm Y, Erkelens DW, et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: effects of expanded-dose simvastatin. Arterioscler Thromb Vasc Biol. 2001;21:1526–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Verseyden C, Meijssen S, van Dijk H, Jansen H, Castro Cabezas M. Effects of atorvastatin on fasting and postprandial complement component 3 response in familial combined hyperlipidemia. J Lipid Res. 2003;44:2100–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Kakuda H, Kobayashi J, Nakato M, Takekoshi N. Short-term effect of pitavastatin treatment on glucose and lipid metabolism and oxidative stress in fasting and postprandial state using a test meal in Japanese men. Cholesterol. 2013;2013:314170.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Rosenson RS, Huskin AL, Wolff DA, Helenowski IB, Rademaker AW. Fenofibrate reduces fasting and postprandial inflammatory responses among hypertriglyceridemia patients with the metabolic syndrome. Atherosclerosis. 2008;198:381–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Okopień B, Krysiak R, Herman ZS. Effects of short-term fenofibrate treatment on circulating markers of inflammation and hemostasis in patients with impaired glucose tolerance. J Clin Endocrinol Metab. 2006;91:1770–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Van Wijk J, Coll B, Castro Cabezas M, Koning E, Camps J, Mackness B, et al. Rosiglitazone modulates fasting and post-prandial paraoxonase 1 activity in type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2006;33:1134–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Coll B, van Wijk JPH, Parra S, Castro Cabezas M, Hoepelman IM, Alonso-Villaverde C, et al. Effects of rosiglitazone and metformin on postprandial paraoxonase-1 and monocyte chemoattractant protein-1 in human immunodeficiency virus-infected patients with lipodystrophy. Eur J Pharmacol. 2006;544:104–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G, et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care. 2013;36:2346–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marijke A. de Vries
    • 1
  • Boudewijn Klop
    • 1
  • Hans W. Janssen
    • 2
  • Tjin L. Njo
    • 2
  • Elsbeth M. Westerman
    • 3
  • Manuel Castro Cabezas
    • 1
  1. 1.Department of Internal Medicine, Center for Diabetes and Vascular MedicineSint Franciscus GasthuisRotterdamThe Netherlands
  2. 2.Department of Clinical ChemistrySint Franciscus GasthuisRotterdamThe Netherlands
  3. 3.Department of Clinical PharmacySint Franciscus GasthuisRotterdamThe Netherlands

Personalised recommendations