When Two Is Better Than One – Product Recommendation with Dual Information Processing Strategies

  • Wee-Kek Tan
  • Chuan-Hoo Tan
  • Hock-Hai Teo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8527)


Extant literature on product recommendation decision aids mainly focus on the use of individual aids in isolation. However, consumers typically shop using a two-step decision making process that necessitates the provision of both detailed attributes information and overall utility value of an item. Drawing on the information processing strategy switching paradigm as the theoretical lens, this paper posits that consumers who are provided with an attribute(alternative)-based screening aid in conjunction with an alternative(attribute)-based explanation-supported evaluation aid would expend less decision effort. That is, one aid should provide either attribute-based or alternative-based information while the other aid should provide a different type of information. In this manner, consumers benefit from both types of information and enjoy a more efficient decision process.


Product recommendation online decision aid information processing strategy decision effort 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiao, B., Benbasat, I.: E-Commerce Product Recommendation Agents: Use, Characteristics and Impact. MIS Quarterly 31(1), 137–209 (2007)Google Scholar
  2. 2.
    Häubl, G., Trifts, V.: Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids. Marketing Science 19(1), 4–21 (2000)CrossRefGoogle Scholar
  3. 3.
    Howard, J.A., Sheth, J.N.: The Theory of Buyer Behavior. John Wiley, New York (1969)Google Scholar
  4. 4.
    Gregor, S., Benbasat, I.: Explanations from Intelligent Systems: Theoretical Foundations and Implications for Practice. MIS Quarterly 23(4), 497–530 (1999)CrossRefGoogle Scholar
  5. 5.
    Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cambridge University Press (1993)Google Scholar
  6. 6.
    Tan, C.H., Teo, H.H., Benbasat, I.: Assessing Screening and Evaluation Decision Support Systems: A Resource-Matching Approach. Information Systems Research 21(2), 305–326 (2010)CrossRefGoogle Scholar
  7. 7.
    Edwards, W., Fasolo, B.: Decision Technology. Annual Review of Psychology 52, 581–606 (2001)CrossRefGoogle Scholar
  8. 8.
    Alba, J., Lynch, J., Weitz, B., Janiszewski, C., Lutz, R., Sawyer, A., Wood, S.: Interactive Home Shopping: Consumer, Retailer and Manufacturer Incentives to Participate in Electronic Marketplaces. Journal of Marketing 61(3), 38–53 (1997)CrossRefGoogle Scholar
  9. 9.
    Slade, S.: Generating Explanations for Goal-Based Decision Making. Decision Sciences 23(6), 1440–1461 (1992)CrossRefGoogle Scholar
  10. 10.
    Roe, R.M., Busemeyer, J.R., Townsend, J.T.: Multialternative Decision Field Theory: A Dynamic Connectionist Model of Decision Making. Psychological Review 108(2), 370–392 (2001)CrossRefGoogle Scholar
  11. 11.
    Swait, J., Adamowicz, W.: The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching. Journal of Consumer Research 28(1), 135–148 (2001)CrossRefGoogle Scholar
  12. 12.
    Häubl, G., Murray, K.B.: Double Agents: Assessing the Role of Electronic Product Recommendation Systems. MIT Sloan Management Review 47(3), 8–12 (2006)Google Scholar
  13. 13.
    Swaminathan, V.: The Impact of Recommendation Agents on Consumer Evaluation and Choice: The Moderating Role of Category Risk, Product Complexity, and Consumer Knowledge. Journal of Consumer Psychology 13(1/2), 93–101 (2003)CrossRefGoogle Scholar
  14. 14.
    Vijayasarathy, L.R., Jones, J.M.: Do Internet Shopping Aids Make a Difference? An Empirical Investigation. Electronic Markets 11(1), 75–83 (2001)CrossRefGoogle Scholar
  15. 15.
    Todd, P., Benbasat, I.: Evaluating the Impact of DSS, Cognitive Effort and Incentive on Strategy Selection. Information Systems Research 19(4), 356–374 (1999)CrossRefGoogle Scholar
  16. 16.
    Todd, P., Benbasat, I.: Inducing Compensatory Information Processing through Decision Aids that Facilitate Effort Reduction: An Experimental Assessment. Journal of Behavioral Decision Making 13, 91–106 (2000)CrossRefGoogle Scholar
  17. 17.
    Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive Consumer Choice Processes. Journal of Consumer Research 25(3), 187–217 (1998)CrossRefGoogle Scholar
  18. 18.
    Kleinmuntz, D.N., Schkade, D.A.: Information Displays and Decision Processes. Psychological Science 4(4), 221–227 (1993)CrossRefGoogle Scholar
  19. 19.
    Tversky, A.: Elimination by Aspects: A Theory of Choice. Psychological Review 79, 281–299 (1972)CrossRefGoogle Scholar
  20. 20.
    Chandrasekaran, B., Tanner, M.C., Josephson, J.R.: Explaining Control Strategies in Problem Solving. IEEE Expert: Intelligent Systems and Their Applications 4(1), 19–24 (1989)CrossRefGoogle Scholar
  21. 21.
    Payne, J.W.: Contingent Decision Behavior. Psychological Bulletin 92(2), 382–402 (1982)CrossRefGoogle Scholar
  22. 22.
    Payne, J.W., Bettman, J.R., Johnson, E.J.: Adaptive Strategy Selection in Decision Making. Journal of Experimental Psychology: Learning, Memory, and Cognition 14(3), 534–552 (1988)Google Scholar
  23. 23.
    Lussier, D.A., Olshavsky, R.W.: Task Complexity and Contingent Processing in Brand Choice. Journal of Consumer Research 6(2), 154–165 (1979)CrossRefGoogle Scholar
  24. 24.
    Bettman, J.R., Kakkar, P.: Effects of Information Presentation Format on Consumer Information Acquisition Strategies. Journal of Consumer Research 3, 233–240 (1977)CrossRefGoogle Scholar
  25. 25.
    Bettman, J.R., Zins, M.A.: Information Format and Choice Task Effects in Decision Making. Journal of Consumer Research 6, 141–153 (1979)CrossRefGoogle Scholar
  26. 26.
    Jarvenpaa, S.L.: The Effect of Task Demands and Graphical Format on Information Processing Strategies. Management Science 35(3), 285–303 (1989)CrossRefGoogle Scholar
  27. 27.
    Herlocker, J.L., Konstan, J.A., Riedl, J.T.: Explaining Collaborative Filtering Recommendations. In: 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)Google Scholar
  28. 28.
    Anand, P., Sternthal, B.: Strategies for Designing Persuasive Messages: Deductions from the Resource Matching Hypothesis. In: Cafferata, P., Tybout, A.M. (eds.) Cognitive and Affective Responses to Advertising, Lexington, MA, pp. 135–159 (1989)Google Scholar
  29. 29.
    Meyers-Levy, J., Peracchio, L.A.: Understanding the Effects of Color: How the Correspondence between Available and Required Resources Affects Attitudes. Journal of Consumer Research 22(2), 121–138 (1995)CrossRefGoogle Scholar
  30. 30.
    Simon, H.A.: A Behavioral Model of Rational Choice. Quarterly Journal of Economics 69(1), 99–118 (1955)CrossRefGoogle Scholar
  31. 31.
    Smith, D.C., Park, C.W.: The Effects of Brand Extensions on Market Share and Advertising Efficiency. Journal of Marketing Research 29, 296–313 (1992)CrossRefGoogle Scholar
  32. 32.
    Keppel, G.: Design and Analysis: A Researcher’s Handbook. Prentice Hall, Upper Saddle River (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wee-Kek Tan
    • 1
  • Chuan-Hoo Tan
    • 2
  • Hock-Hai Teo
    • 1
  1. 1.Dept. of Information SystemsNational University of SingaporeSingaporeSingapore
  2. 2.Dept. of Information SystemsCity University of Hong KongKowloon TongHong Kong

Personalised recommendations