Learning Spaces, and How to Build Them

  • Jean-Paul Doignon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8478)


In Knowledge Space Theory (KST), a knowledge structure encodes a body of information as a domain, consisting of all the relevant pieces of information, together with the collection of all possible states of knowledge, identified with specific subsets of the domain. Knowledge spaces and learning spaces are defined through pedagogically natural requirements on the collection of all states. We explain here several ways of building in practice such structures on a given domain. In passing we point out some connections linking KST with Formal Concept Analysis (FCA).


knowledge space learning space QUERY routine antimatroid convex geometry closure space formal concept lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berge, C.: Hypergraphs. Combinatorics of finite sets, Transl. from the French. North-Holland, Amsterdam (1989)Google Scholar
  2. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  3. Buekenhout, F.: Espaces à fermeture. Bull. Soc. Math. Belg. 19, 147–178 (1967)zbMATHMathSciNetGoogle Scholar
  4. Caspard, N., Monjardet, B.: Some lattices of closure systems on a finite set. Discrete Math. Theor. Comput. Sci. 6(2), 163–190 (electronic) (2004)Google Scholar
  5. Cosyn, E., Uzun, H.B.: Note on two necessary and sufficient axioms for a well-graded knowledge space. J. Math. Psych. 53, 40–42 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. Doignon, J.-P., Falmagne, J.-C.: Well-graded families of relations. Discrete Math. 173, 35–44 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  8. Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces and Learning Spaces. To appear in: Batchelder, W.H., Colonius, H., Dzhafarov, E.N., Myung, J. (eds.) New Handbook of Mathematical Psychology (in press)Google Scholar
  9. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedicata 19, 247–270 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Eppstein, D., Falmagne, J.-C., Uzun, H.B.: On verifying and engineering the wellgradedness of a union-closed family. J. Math. Psych. 53, 34–39 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Falmagne, J.-C., Doignon, J.-P.: Learning Spaces. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  12. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen. Springer, Heidelberg (1996); English translation by Franske, C.: Formal Concept Analysis: Mathematical FoundationsGoogle Scholar
  13. Jamison, R.E.: Copoints in antimatroids. In: Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1980), vol. II. Congr. Numer., vol. 29, pp. 535–544 (1980)Google Scholar
  14. Jamison, R.E.: A perspective on abstract convexity: classifying alignments by varieties. In: Convexity and Related Combinatorial Geometry (Norman, Okla., 1980). Lecture Notes in Pure and Appl. Math., vol. 76, pp. 113–150. Dekker, New York (1982)Google Scholar
  15. Koppen, M.: Extracting human expertise for constructing knowledge spaces: An algorithm. J. Math. Psych. 37, 1–20 (1993)CrossRefzbMATHGoogle Scholar
  16. Koppen, M.: On alternative representations for knowledge spaces. Math. Social Sci. 36, 127–143 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Koppen, M., Doignon, J.-P.: How to build a knowledge space by querying an expert. J. Math. Psych. 34, 311–331 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  18. Korte, B., Lovász, L., Schrader, R.: Greedoids. Algorithms and Combinatorics, vol. 4. Springer, Berlin (1991)Google Scholar
  19. Rusch, A., Wille, R.: Knowledge spaces and formal concept analysis. In: Bock, H.-H., Polasek, W. (eds.) Data Analysis and Information Systems. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (1996)Google Scholar
  20. Spoto, A., Stefanutti, L., Vidotto, G.: Knowledge space theory, formal concept analysis, and computerized psychological assessment. Behavior Res. Meth. 42, 342–350 (2010)CrossRefGoogle Scholar
  21. van de Vel, M.L.J.: Theory of convex structures. North-Holland, Amsterdam (1993)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jean-Paul Doignon
    • 1
  1. 1.Department of MathematicsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations