Recommended Considerations for Human-Robot Interaction Communication Requirements

  • Stephanie J. Lackey
  • Daniel J. Barber
  • Sushunova G. Martinez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8511)


Emerging robot systems increasingly exhibit greater levels of autonomy, requiring improvements in interaction capabilities to enable robust human-robot communication. This paper summarizes the present level of supervisory control in robots, both fielded and experimental, and the type of communication interfaces needed for successful Human-Robot Interaction (HRI). The focus of this research is to facilitate direct interactions between humans and robot systems within dismounted military operations and similar applications (e.g., law enforcement, homeland security, etc.). Achieving this goal requires advancing audio, visual, and tactile communication capabilities beyond the state-of-the-art. Thus, the requirement for a communication standard supporting supervisory control of robot teammates is recommended.


Supervisory control autonomy human-robot interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U.S. Congress, National Defense Authorization Act for Fiscal Year 2001, U.S. Congress, Washington (2001) Google Scholar
  2. 2.
    Office of the Secretary of Defense, Unmanned Systems Roadmap: 2007-2032. U.S. Department of Defense (2007)Google Scholar
  3. 3.
    Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. The MIT Press, Cambridge (1992)Google Scholar
  4. 4.
    Rasmussan, J.: Outlines of a Hybrid Model of the Process Plant Operator. Monitoring Behavior and Supervisory Control 1, 371–383 (1976)CrossRefGoogle Scholar
  5. 5.
    Ogreten, S., Lackey, S., Nicholson, D.: Recommended Roles for Uninhabited Team Members within Mixed-Initiative Combat Teams. Collaborative Technologies and Systems, 531-536 (2010)Google Scholar
  6. 6.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for Types and Levels of Human Interaction. IEEE Transactions on Systems 30(3), 286–297 (2000)Google Scholar
  7. 7.
    Yamauchi, B. M.: Packbot: A versatile platform for military robotics. Unmanned Ground Vehicle Technology VI 5422, (2008) Google Scholar
  8. 8.
    Baxter, J.W., Horn, G.S.: Controlling Teams of Uninhabited Air Vehicles. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, Netherlands, (2005)Google Scholar
  9. 9.
    Mehra, R. K., Boskovic, J. D., Li, S. M.: Autonomous Formation Flying of Multiple UCAVs Under Communication Failure. Position Location and Navigation Symposium, 371-378 (2000).Google Scholar
  10. 10.
    Hildebrandt, E.: RQ-4 Global Hawk. Northrop Grumman (2012)Google Scholar
  11. 11.
    Khurshid, J., Bing-rong, H.: Military robots-A Glimpse From Today and Tomorrow. In: 8th International Conference on Control, Automation, Robotics, and Vision, pp. 771–777 (2004)Google Scholar
  12. 12.
    Crow, W. D.: RQ1L Predator Unmanned Ground Vehicle, U.S. Marine Corps (2002) Google Scholar
  13. 13.
    Valois, J.S., Herman, H., Bares, J., Rice, D.P.: Remote Operation of the Black Knight Unmanned Ground Combat Vehicle, Unmanned System Technology X (2008)Google Scholar
  14. 14.
    Yamauchi, B.: Artist, The Valkyrie.(Art). I Robot (2005)Google Scholar
  15. 15.
    Ott, N.: Artist, Black Knight.(Art). National Robotics Engineering Center, 2007-2012Google Scholar
  16. 16.
    Weinschenk, S., Barker, D.T.: Designing Effective Speech Interfaces. In: Hudson, T. (ed.). John Wiley & Sons, Inc. (2000)Google Scholar
  17. 17.
    Barnlund, Interpersonal Communication: Survey and Studies. Houghton Mifflin, Boston (1986)Google Scholar
  18. 18.
    Lackey, S.J., Barber, D.J., Reinerman-Jones, L., Badler, N., Hudson, I.: Defining Next-Generation Multi-modal Communication in Human-Robot Interaction. In: Human Factors and ERgonomics Society Conference, Las Vegas (2011)Google Scholar
  19. 19.
    Hearst, M., Allen, J., Guinn, C., Horvitz, E.: Mixed-Initiative Interaction: Trends & Controversies, pp. 14–23. IEEE Intelligent Systems (1999)Google Scholar
  20. 20.
    Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  21. 21.
    Wickens, C.D., Gordon, S.E., Liu, Y.: An Introduction to Human Factors Engineering. Addison-Wesley Educational Publishers Inc., New York (1998)Google Scholar
  22. 22.
    Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: Physiology, Psychology, and Ecology. Psychology Press, New York (2003)Google Scholar
  23. 23.
    Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego (2011)Google Scholar
  24. 24.
    Brewster, B., Brown, L.M.: Tactons: Structured Tactile Messages for Non-Visual Information Display. In: Austrailian User Interface Conference, Dunedin, New Zealand (2004)Google Scholar
  25. 25.
    White, T.: Suitable Body Locations and Vibrotactile Cueing Types for Dismounted Soldiers. U.S. Army Research Laboratory, Aberdeen Proving Grounds, MD (2010)Google Scholar
  26. 26.
    Wickens, C.: Multiple Resources and Performance Prediction. Theoretical Issues in Ergonomics Science 3(2), 159–177 (2002)CrossRefGoogle Scholar
  27. 27.
    Glumm, M.M., Kehring, K.L., White, T.L.: Effects of Visual and Auditory Cues About Threat Location on Target Acquisition and Attention to Auditory Communications. US Army Research Laboratory, Aberdeen Proving Ground, MD (2005)Google Scholar
  28. 28.
    Gunn, D.V., Warm, J.S., Nelson, W.T., Bolia, R.S., Schumsky, D.A., Corcoran, K.J.: Target acquisition with UAVs: Vigilance displays and advanced cueing interface. Human Factors 47(3), 488–497 (2006)CrossRefGoogle Scholar
  29. 29.
    Van Erp, J.B.F., Werkhoven, P.: Validation of Principles for Tactile Navigation Displays. In: Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting, San Francisco, CA (2006)Google Scholar
  30. 30.
    Salvendy, G.: Handbook of Human Factors and Ergonomics. John Wiley & Sons, Inc., New York (2012)CrossRefGoogle Scholar
  31. 31.
    Lee, T.D., Genovese, E.D.: Distribution of Practice in Motor Skill Aquisition: Learning and Performance Effect Reconsidered. Research Quarterly for Exercise and Sport 59, 277–287 (1988)CrossRefGoogle Scholar
  32. 32.
    Lee, T.D., Genovese, E.D.: Distribution of Practice in Motor Skill Aquisition: Different Effects for Discrete and Continuous Task. Research Quarterly for Exercise and Sport 60, 59–65 (1989)CrossRefGoogle Scholar
  33. 33.
    Shea, J., Morgan, R.L.: Contextual Effect on Acquisition, Retention, and Transfer of a Motor Skill. Journal of Experimentation Psychology: Human Learning and Memory 5, 179–187 (1979)Google Scholar
  34. 34.
    Sanders, M.S., McCormick, E.J.: Human Factors in Engineering and Design. McGraw-Hill, New York (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stephanie J. Lackey
    • 1
  • Daniel J. Barber
    • 1
  • Sushunova G. Martinez
    • 1
  1. 1.Institute for Simulation and TrainingUniversity of Central FloridaOrlandoUSA

Personalised recommendations