Prototyping for Digital Sports Integrating Game, Simulation and Visualization

  • Yasuto Nakanishi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)


Recent advances in sensor technology has made technology support for sports and physical exercise commonplace. Sports played along with mobile devices or robots are actively studied; however, most of these systems utilize only one device or robot. Iterative prototyping with several devices requires incurs additional costs for gathering test players or conducting field tests. We have proposed hybrid prototyping using both virtual and miniature spaces for prototyping spatial interactive systems to cope with problems similar to those. This paper discusses a prototyping trial for a soccer training system using physical and virtual mobile cone robots. We propose a new form of hybrid prototyping that unifies game, simulation, and visualization.


design hybrid prototyping digital sports 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mueller, F., Khot, R.A., Chatham, A.D., Pijnappel, S., Toprak, C.C., Marshall, J.: Hci with sports. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 2509–2512. ACM, New York (2013)CrossRefGoogle Scholar
  2. 2.
    Graether, E., Mueller, F.: Joggobot: A flying robot as jogging companion. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp. 1063–1066. ACM, New York (2012)CrossRefGoogle Scholar
  3. 3.
    Ukai, Y., Rekimoto, J.: Swimoid: A swim support system using an underwater buddy robot. In: Proceedings of the 4th Augmented Human International Conference, AH 2013, pp. 170–177. ACM, New York (2013)Google Scholar
  4. 4.
    Higuchi, K., Ishiguro, Y., Rekimoto, J.: Flying eyes: Free-space content creation using autonomous aerial vehicles. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 561–570. ACM, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Nakanishi, Y.: Virtual prototyping using miniature model and visualization for interactive public displays. In: Proceedings of the Designing Interactive Systems Conference, DIS 2012, pp. 458–467. ACM, New York (2012)Google Scholar
  6. 6.
    Nakanishi, Y., Sekiguchi, K., Ohmori, T., Kitahara, S., Akatsuka, D.: Hybrid prototyping by using virtual and miniature simulation for designing spatial interactive information systems. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 250–257. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Ishimura, T., Kato, T., Oda, K., Ohashi, T.: An open robot simulator environment. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 621–627. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Melgar, E.R., Diez, C.C.: Arduino and Kinect Projects: Design, Build, Blow Their Minds, 1st edn. Apress, Berkely (2012)CrossRefGoogle Scholar
  9. 9.
    Baudisch, P., Pohl, H., Reinicke, S., Wittmers, E., Lühne, P., Knaust, M., Köhler, S., Schmidt, P., Holz, C.: Imaginary reality gaming: Ball games without a ball. In: Proc. UIST 2013, pp. 405–410 (2013)Google Scholar
  10. 10.
    Oshita, M., Tomomasa, Y.: Learning motion rules for autonomous characters from control logs using support vector machine. In: International Conference on Computer Animation and Social Agents 2010 (CASA 2010) (2010)Google Scholar
  11. 11.
    Rudd, J., Stern, K., Isensee, S.: Low vs. high-fidelity prototyping debate. Interactions 3, 76–85 (1996)CrossRefGoogle Scholar
  12. 12.
    McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., Vera, A.: Breaking the fidelity barrier: An examination of our current characterization of prototypes and an example of a mixed-fidelity success. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 1233–1242. ACM, New York (2006)Google Scholar
  13. 13.
    Lim, Y.K., Stolterman, E., Tenenberg, J.: The anatomy of prototypes: Prototypes as filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. 15, 7:1–7:27 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yasuto Nakanishi
    • 1
    • 2
  1. 1.Keio UniversityFujisawaJapan
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations