Fighting Technology Dumb Down: Our Cognitive Capacity for Effortful AR Navigation Tools

  • James Wen
  • Agnes Deneka
  • William S. Helton
  • Andreas Dünser
  • Mark Billinghurst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)

Abstract

By overlaying virtual guidance information directly over the surrounding environment, Augmented Reality (AR) is seen as an easy alternative to maps for pedestrians navigating in unfamiliar urban environments. It is hypothesized, however, that easing navigation tasks would result in weaker cognitive maps, leaving users more vulnerable to becoming lost should their navigation device fail. We describe an outdoor navigation study that highlighted the gap between theoretical expectations and real world testing with navigation tools. We addressed the issues by creating a simulation system for testing navigation tools and report on the results of a study comparing AR with maps. We then extended the system to support simultaneous secondary tasks to assess relative workload. We present this as a way of objectively measuring relative cognitive effort expended on navigation tool use. Our findings are helpful in the design of mobile pedestrian navigation tools seeking to balance navigational efficiency with mental map formation.

Keywords

pedestrian navigation augmented reality maps cognitive load virtual environment spatial knowledge acquisition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Board, C.: Map Reading Tasks Appropriate in Experimental Studies in Cartographic Communication. Cartographica: The International Journal for Geographic Information and Geovisualization 15(1), 1–12 (1978)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dünser, A., Billinghurst, M., Wen, J., Lehtinen, V., Nurminen, A.: Exploring the use of Handheld AR for Outdoor Navigation. Computers & Graphics 36, 1084–1095 (2012)CrossRefGoogle Scholar
  3. 3.
    Green, A.L., Helton, W.S.: Dual-task performance during a climbing traverse. Experimental Brain Research 215(3-4), 307–313 (2011), http://www.ncbi.nlm.nih.gov/pubmed/22002634 CrossRefGoogle Scholar
  4. 4.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13(3), 208–217 (1985)CrossRefGoogle Scholar
  5. 5.
    Huang, H., Schmidt, M., Gartner, G.: Spatial Knowledge Acquisition in the Context of GPS-Based Pedestrian Navigation. In: Zentai, L., Reyes Nunez, J. (eds.) Maps for the Future. Lecture Notes in Geoinformation and Cartography, vol. 5, pp. 127–137. Springer, Heidelberg (2012), http://www.springerlink.com/index/10.1007/978-3-642-19522-8 CrossRefGoogle Scholar
  6. 6.
    Liarokapis, F., Mountain, D., Papakonstantinou, S., Brujic-okretic, V., Raper, J.: Mixed Reality For Exploring Urban Environments. In: 1st International Conference on Computer Graphics Theory and Applications (2006)Google Scholar
  7. 7.
    May, A.J., Ross, T., Bayer, S.H., Tarkiainen, M.J.: Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing 7(6), 331–338 (2003), http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00779-003-0248-5
  8. 8.
    Millonig, A., Schechtner, K.: Developing Landmark-Based Pedestrian-Navigation Systems. IEEE Transactions on Intelligent Transportation Systems 8(1), 43–49 (2007), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4114345 CrossRefGoogle Scholar
  9. 9.
    Mulloni, A.: Enhancing Handheld Navigation Systems with Augmented Reality. In: Mobile HCI, pp. 5–8 (2011)Google Scholar
  10. 10.
    Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld Augmented Reality Indoor Navigation with Activity-Based Instructions. In: Mobile HCI 2011 (2011)Google Scholar
  11. 11.
    Münzer, S., Zimmer, H.D., Baus, J.: Navigation assistance: a trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology. Applied 18(1), 18–37 (2012), http://www.ncbi.nlm.nih.gov/pubmed/22141461 CrossRefGoogle Scholar
  12. 12.
    Parush, A., Ahuvia, S., Erev, I.: Degradation in spatial knowledge acquisition when using automatic navigation systems. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 238–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Rehrl, K., Häusler, E., Steinmann, R., Leitinger, S., Bell, D., Weber, M.: Pedestrian Navigation with Augmented Reality, Voice and Digital Map: Results from a Field Study assessing Performance and User Experience. In: Proceedings of the 8th International Symposium on Location-based Services, pp. 3–20 (2011)Google Scholar
  14. 14.
    Seager, W., Fraser, D.S.: Comparing physical, automatic and manual map rotation for pedestrian navigation. In: CHI 2007, pp. 767–776 (2007), http://portal.acm.org/citation.cfm?doid=1240624.1240742
  15. 15.
    Waters, W., Winter, S.: A wayfinding aid to increase navigator independence. Journal of Spatial Information Science 3(3), 103–122 (2011), http://josis.org/index.php/josis/article/view/43 Google Scholar
  16. 16.
    Wen, J., Helton, W.S., Billinghurst, M.: Classifying Users of Mobile Pedestrian Navigation Tools. In: Oz CHI, pp. 1–5 (2013)Google Scholar
  17. 17.
    Willis, K.S., Hölscher, C., Wilbertz, G., Li, C.: A comparison of spatial knowledge acquisition with maps and mobile maps. Computers Environment and Urban Systems 33(2), 100–110 (2009), http://linkinghub.elsevier.com/retrieve/pii/S0198971509000064 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • James Wen
    • 1
  • Agnes Deneka
    • 2
  • William S. Helton
    • 1
  • Andreas Dünser
    • 3
  • Mark Billinghurst
    • 1
  1. 1.University of CanterburyChristchurchNew Zealand
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.CSIROTasmaniaAustralia

Personalised recommendations