Advertisement

Personalizing Knowledge Tracing: Should We Individualize Slip, Guess, Prior or Learn Rate?

  • Junjie Gu
  • Yutao Wang
  • Neil T. Heffernan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)

Abstract

The intelligent tutoring system field is concerned with ways of personalizing to the student. Wang and Heffernan introduced the Student Skill model and showed that it was reliably better than the Knowledge Tracing (KT) model in predictive accuracies. One limitation of their work is that they only investigated one particular way of personalizing, which individualizes all four KT parameters simultaneously. But it may be better if we just use some of the parameters to personalize the model. More generally, we want to address the research question: What are the most important features to personalize? In this work, we systematically explored all 16 possible ways of incorporating student features into the model. We found that prior and slip are the two most important features to individualize, and the best model is the one with all four parameters individualized. Additionally, the one parameter that can be dropped without any hurt to performance is guess.

Keywords

Knowledge Tracing Bayesian Networks prediction personalization Intelligent Tutoring System 

References

  1. 1.
    Corbett, A., Anderson, J.: Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)CrossRefGoogle Scholar
  2. 2.
    Gong, Y., Beck, J.E., Heffernan, N.T.: Comparing Knowledge Tracing and Performance Factor Analysis by Using Multiple Model Fitting. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Murphy, K.P.: The Bayes Net Toolbox for Matlab, Computing Science and Statistics (2007), http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
  4. 4.
    Pardos, Z.A., Heffernan, N.T.: Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Heffernan, N.T.: The Student Skill Model. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 399–404. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Personalizing Knowledge Tracing, http://tinyurl.com/ohofyrg

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Junjie Gu
    • 1
  • Yutao Wang
    • 1
  • Neil T. Heffernan
    • 1
  1. 1.Department of Computer ScienceWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations