Advertisement

Validating the Automated Assessment of Participation and of Collaboration in Chat Conversations

  • Mihai Dascalu
  • Ştefan Trausan-Matu
  • Philippe Dessus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)

Abstract

As Computer Supported Collaborative Learning (CSCL) gains a broader usage as a viable alternative to classic educational scenarios, the need for automated tools capable of supporting tutors in the time consuming process of analyzing conversations becomes more stringent. Moreover, in order to fully explore the benefits of such scenarios, a clear demarcation must be made between participation or active involvement, and collaboration that presumes the intertwining of ideas or points of view with other participants. Therefore, starting from a cohesion-based model of the discourse, we propose two computational models for assessing collaboration and participation. The first model is based on the cohesion graph and can be perceived as a longitudinal analysis of the ongoing conversation, thus accounting for participation from a social knowledge-building perspective. In the second approach, collaboration is regarded from a dialogical perspective as the intertwining or overlap of voices pertaining to different speakers, therefore enabling a transversal analysis of subsequent discussion slices.

Keywords

Computer Supported Collaborative Learning Cohesion-based Discourse Analysis Dialogism Participation Assessment Collaboration Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stahl, G.: Group cognition. Computer support for building collaborative knowledge. MIT Press, Cambridge (2006)Google Scholar
  2. 2.
    Cress, U.: Mass collaboration and learning. In: Luckin, R., Puntambekar, S., Goodyear, P., Grabowski, B., Underwood, J., Winters, N. (eds.) Handbook of Design in Educational Technology. Routledge, New York (2013)Google Scholar
  3. 3.
    Reffay, C., Martinez-Mones, A.: Basic concepts and techniques in social network analysis. In: Luckin, R., Puntambekar, S., Goodyear, P., Grabowski, B., Underwood, J., Winters, N. (eds.) Handbook of Design in Educational Technology, pp. 448–456. Routledge, New York (2013)Google Scholar
  4. 4.
    Bakhtin, M.M.: The dialogic imagination: Four essays. The University of Texas Press, Austin and London (1981)Google Scholar
  5. 5.
    Dascalu, M., Rebedea, T., Trausan-Matu, S., Armitt, G.: PolyCAFe: Collaboration and Utterance Assessment for Online CSCL Conversations. In: CSCL 2011, vol. 2, pp. 781–785. ISLS, Hong Kong (2011)Google Scholar
  6. 6.
    Dascalu, M., Trausan-Matu, S., Dessus, P.: Cohesion-based Analysis of CSCL Conversations: Holistic and Individual Perspectives. In: CSCL 2013, vol. 1, pp. 145–152. ISLS, Madison (2013)Google Scholar
  7. 7.
    Dascalu, M., Dessus, P., Trausan-Matu, Ş., Bianco, M., Nardy, A.: ReaderBench, An Environment for Analyzing Text Complexity and Reading Strategies. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 379–388. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dascalu, M., Chioasca, E.-V., Trausan-Matu, S.: ASAP – An Advanced System for Assessing Chat Participants. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 58–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dascalu, M.: Analyzing Discourse and Text Complexity for Learning and Collaborating. SCI, vol. 534. Springer, Switzerland (2014)Google Scholar
  11. 11.
    Trausan-Matu, S., Dascalu, M., Rebedea, T.: A system for the automatic analysis of Computer-Supported Collaborative Learning chats. In: ICALT 2012, pp. 95–99. IEEE, Rome (2012)Google Scholar
  12. 12.
    Trausan-Matu, S., Dascalu, M., Dessus, P.: Textual Complexity and Discourse Structure in Computer-Supported Collaborative Learning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 352–357. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Bereiter, C.: Education and Mind in the Knowledge Age. Lawrence Erlbaum Associates, Mahwah (2002)Google Scholar
  14. 14.
    Scardamalia, M.: Collective cognitive responsibility for the advancement of knowledge. In: Smith, B., Bereiter, C. (eds.) Liberal Education in a Knowledge Society, pp. 67–98. Open Court Publishing, Chicago (2002)Google Scholar
  15. 15.
    Trausan-Matu, S.: Computer Support for Creativity in Small Groups using chats. Annals of the Academy of Romanian Scientists, Series on Science and Technology of Information 3(2), 81–90 (2010)Google Scholar
  16. 16.
    Trausan-Matu, S., Rebedea, T.: Polyphonic Inter-Animation of Voices in VMT. In: Stahl, G. (ed.) Studying Virtual Math Teams, pp. 451–473. Springer, Boston (2009)CrossRefGoogle Scholar
  17. 17.
    Trausan-Matu, S., Stahl, G.: Polyphonic inter-animation of voices in chats. In: CSCL 2007 Workshop on Chat Analysis in Virtual Math Teams, p. 12. ISLS, New Brunwick (2007)Google Scholar
  18. 18.
    Trausan-Matu, S.: Automatic Support for the Analysis of Online Collaborative Learning Chat Conversations. In: Tsang, P., Cheung, S.K.S., Lee, V.S.K., Huang, R. (eds.) ICHL 2010. LNCS, vol. 6248, pp. 383–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mihai Dascalu
    • 1
  • Ştefan Trausan-Matu
    • 1
  • Philippe Dessus
    • 2
  1. 1.Computer Science DepartmentPolitehnica University of BucharestRomania
  2. 2.LSEUniv. Grenoble AlpesFrance

Personalised recommendations