The Affective Meta-Tutoring Project: Lessons Learned

  • Kurt VanLehn
  • Winslow Burleson
  • Sylvie Girard
  • Maria Elena Chavez-Echeagaray
  • Javier Gonzalez-Sanchez
  • Yoalli Hidalgo-Pontet
  • Lishan Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)


The Affective Meta-Tutoring system is comprised of (1) a tutor that teaches system dynamics modeling, (2) a meta-tutor that teaches good strategies for learning how to model from the tutor, and (3) an affective learning companion that encourages students to use the learning strategy that the meta-tutor teaches. The affective learning companion’s messages are selected by using physiological sensors and log data to determine the student’s affective state. Evaluations compared the learning gains of three conditions: the tutor alone, the tutor plus meta-tutor and the tutor, meta-tutor and affective learning companion.


Tutoring meta-tutoring learning strategies affective learning companion affective physiological sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fonseca, B., Chi, M.T.H.: The self-explanation effect: A constructive learning activity. In: Mayer, R.E., Alexander, P. (eds.) The Handbook of Research on Learning and Instruction, pp. 296–321. Routledge, New York (2011)Google Scholar
  2. 2.
    Aleven, V., et al.: Help seeking and help design in interactive learning environments. Review of Educational Research 73(2), 277–320 (2003)CrossRefGoogle Scholar
  3. 3.
    Hattie, J., Biggs, J., Purdie, N.: Effects of learning skills interventions on student learning: A meta-analysis of findings. Review of Educational Research 66, 99–136 (1996)CrossRefGoogle Scholar
  4. 4.
    National, R.C.: A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. National Academies Press, Washington (2012)Google Scholar
  5. 5.
    CCSSO, The Common Core State Standards for Mathematics (2011), (October 31, 2011)
  6. 6.
    VanLehn, K.: Model construction as a learning activity: A design space and review. Interactive Learning Environments 21(4), 371–413 (2013)CrossRefGoogle Scholar
  7. 7.
    Metcalf, S.J., Krajcik, J., Soloway, E.: Model-It: A design retrospective. In: Jacobson, M.J., Kozma, R.B. (eds.) Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning, pp. 77–115 (2000)Google Scholar
  8. 8.
    Chi, M., VanLehn, K.: Meta-cognitive strategy instruction in intelligent tutoring systems: How, when and why. Journal of Educational Technology and Society 13(1), 25–39 (2010)Google Scholar
  9. 9.
    Roll, I., et al.: Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 267–280 (2011)Google Scholar
  10. 10.
    Dweck, C.S., Leggett, E.L.: A social-cognitive approach to motivation and personality. Psychological Review 95(2), 256–273 (1988)CrossRefGoogle Scholar
  11. 11.
    Gulz, A.: Benefits of virtual characters in computer-based learning environments: Claims and evidence. International Journal of Artificial Intelligence and Education 14(3), 313–334 (2004)Google Scholar
  12. 12.
    Arroyo, I., et al.: The impact of animated pedagogical agents on girls’ and boys’ emotions, attitudes, behaviors and learning. In: International Conference on Advanced Learning Technologies (ICALT 2011), Athens, Georgia (2011)Google Scholar
  13. 13.
    D’Mello, S., Lehman, B., Sullins, J., Daigle, R., Combs, R., Vogt, K., Perkins, L., Graesser, A.: A time for emoting: When affect-sensitivity is and isn’t effective at promoting deep learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 245–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gulz, A., Haake, M., Silvervarg, A.: Extending a teachable agent with a social conversation module – Effects on student experiences and learning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 106–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Arroyo, I., et al.: Repairing disengagement with non-invasive interventions. In: Luckin, R., Koedinger, K.R., Greer, J. (eds.) Artificial Intelligence in Education, pp. 195–202. IOS Press, Amsterdam (2007)Google Scholar
  16. 16.
    Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 722–724. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Girard, S., Chavez-Echeagaray, M.E., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., Zhang, L., Burleson, W., VanLehn, K.: Defining the behavior of an affective learning companion in the affective meta-tutor project. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 21–30. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    D’Mello, S.K., Graesser, A.C.: Dynamics of affective states during complex learning. Learning and Instruction 22, 145–157 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., et al.: Evaluation of a meta-tutor for constructing models of dynamic systems. Computers & Education (in press)Google Scholar
  20. 20.
    Girard, S., et al.: How can Affect be used to improve the Learning outcomes of Interactive Instructional Systems? ( in prep.)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kurt VanLehn
    • 1
  • Winslow Burleson
    • 1
  • Sylvie Girard
    • 2
  • Maria Elena Chavez-Echeagaray
    • 1
  • Javier Gonzalez-Sanchez
    • 1
  • Yoalli Hidalgo-Pontet
    • 1
  • Lishan Zhang
    • 1
  1. 1.Arizona State UniversityTempeUSA
  2. 2.University of BirminghamBirminghamUK

Personalised recommendations