The Affective Meta-Tutoring Project: Lessons Learned

  • Kurt VanLehn
  • Winslow Burleson
  • Sylvie Girard
  • Maria Elena Chavez-Echeagaray
  • Javier Gonzalez-Sanchez
  • Yoalli Hidalgo-Pontet
  • Lishan Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)

Abstract

The Affective Meta-Tutoring system is comprised of (1) a tutor that teaches system dynamics modeling, (2) a meta-tutor that teaches good strategies for learning how to model from the tutor, and (3) an affective learning companion that encourages students to use the learning strategy that the meta-tutor teaches. The affective learning companion’s messages are selected by using physiological sensors and log data to determine the student’s affective state. Evaluations compared the learning gains of three conditions: the tutor alone, the tutor plus meta-tutor and the tutor, meta-tutor and affective learning companion.

Keywords

Tutoring meta-tutoring learning strategies affective learning companion affective physiological sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fonseca, B., Chi, M.T.H.: The self-explanation effect: A constructive learning activity. In: Mayer, R.E., Alexander, P. (eds.) The Handbook of Research on Learning and Instruction, pp. 296–321. Routledge, New York (2011)Google Scholar
  2. 2.
    Aleven, V., et al.: Help seeking and help design in interactive learning environments. Review of Educational Research 73(2), 277–320 (2003)CrossRefGoogle Scholar
  3. 3.
    Hattie, J., Biggs, J., Purdie, N.: Effects of learning skills interventions on student learning: A meta-analysis of findings. Review of Educational Research 66, 99–136 (1996)CrossRefGoogle Scholar
  4. 4.
    National, R.C.: A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. National Academies Press, Washington (2012)Google Scholar
  5. 5.
    CCSSO, The Common Core State Standards for Mathematics (2011), http://www.corestandards.org (October 31, 2011)
  6. 6.
    VanLehn, K.: Model construction as a learning activity: A design space and review. Interactive Learning Environments 21(4), 371–413 (2013)CrossRefGoogle Scholar
  7. 7.
    Metcalf, S.J., Krajcik, J., Soloway, E.: Model-It: A design retrospective. In: Jacobson, M.J., Kozma, R.B. (eds.) Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning, pp. 77–115 (2000)Google Scholar
  8. 8.
    Chi, M., VanLehn, K.: Meta-cognitive strategy instruction in intelligent tutoring systems: How, when and why. Journal of Educational Technology and Society 13(1), 25–39 (2010)Google Scholar
  9. 9.
    Roll, I., et al.: Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 267–280 (2011)Google Scholar
  10. 10.
    Dweck, C.S., Leggett, E.L.: A social-cognitive approach to motivation and personality. Psychological Review 95(2), 256–273 (1988)CrossRefGoogle Scholar
  11. 11.
    Gulz, A.: Benefits of virtual characters in computer-based learning environments: Claims and evidence. International Journal of Artificial Intelligence and Education 14(3), 313–334 (2004)Google Scholar
  12. 12.
    Arroyo, I., et al.: The impact of animated pedagogical agents on girls’ and boys’ emotions, attitudes, behaviors and learning. In: International Conference on Advanced Learning Technologies (ICALT 2011), Athens, Georgia (2011)Google Scholar
  13. 13.
    D’Mello, S., Lehman, B., Sullins, J., Daigle, R., Combs, R., Vogt, K., Perkins, L., Graesser, A.: A time for emoting: When affect-sensitivity is and isn’t effective at promoting deep learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 245–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gulz, A., Haake, M., Silvervarg, A.: Extending a teachable agent with a social conversation module – Effects on student experiences and learning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 106–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Arroyo, I., et al.: Repairing disengagement with non-invasive interventions. In: Luckin, R., Koedinger, K.R., Greer, J. (eds.) Artificial Intelligence in Education, pp. 195–202. IOS Press, Amsterdam (2007)Google Scholar
  16. 16.
    Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 722–724. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Girard, S., Chavez-Echeagaray, M.E., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., Zhang, L., Burleson, W., VanLehn, K.: Defining the behavior of an affective learning companion in the affective meta-tutor project. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 21–30. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    D’Mello, S.K., Graesser, A.C.: Dynamics of affective states during complex learning. Learning and Instruction 22, 145–157 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., et al.: Evaluation of a meta-tutor for constructing models of dynamic systems. Computers & Education (in press)Google Scholar
  20. 20.
    Girard, S., et al.: How can Affect be used to improve the Learning outcomes of Interactive Instructional Systems? ( in prep.)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kurt VanLehn
    • 1
  • Winslow Burleson
    • 1
  • Sylvie Girard
    • 2
  • Maria Elena Chavez-Echeagaray
    • 1
  • Javier Gonzalez-Sanchez
    • 1
  • Yoalli Hidalgo-Pontet
    • 1
  • Lishan Zhang
    • 1
  1. 1.Arizona State UniversityTempeUSA
  2. 2.University of BirminghamBirminghamUK

Personalised recommendations