Spatial Keypoint Representation for Visual Object Retrieval

  • Tomasz Nowak
  • Patryk Najgebauer
  • Jakub Romanowski
  • Marcin Gabryel
  • Marcin Korytkowski
  • Rafał Scherer
  • Dimce Kostadinov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8468)

Abstract

This paper presents a concept of an object pre-classification method based on image keypoints generated by the SURF algorithm. For this purpose, the method uses keypoints histograms for image serialization and next histograms tree representation to speed-up the comparison process. Presented method generates histograms for each image based on localization of generated keypoints. Each histogram contains 72 values computed from keypoints that correspond to sectors that slice the entire image. Sectors divide image in radial direction form center points of objects that are the subject of classification. Generated histograms allow to store information of the object shape and also allow to compare shapes efficiently by determining the deviation between histograms. Moreover, a tree structure generated from a set of image histograms allows to further speed up process of image comparison. In this approach each histogram is added to a tree as a branch. The sub tree is created in a reverse order. The last element of the lowest level stores the entire histogram. Each next upper element is a simplified version of its child. This approach allows to group histograms by their parent node and reduce the number of node comparisons. In case of not matched element, its entire subtree is omitted. The final result is a set of similar images that could be processed by more complex methods.

Keywords

content-based image retrieval keypoints histograms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers. Journal of Artificial Intelligence and Soft Computing Research 1(2), 147–153 (2011)Google Scholar
  4. 4.
    Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic gender classification by feature selection. Journal of Artificial Intelligence and Soft Computing Research 1(3), 241–253 (2011)Google Scholar
  5. 5.
    Cpałka, K., Rutkowski, L.: Flexible takagi-sugeno fuzzy systems. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769 (July 2005)Google Scholar
  6. 6.
    Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1851–1857 (2006)Google Scholar
  7. 7.
    Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)CrossRefGoogle Scholar
  8. 8.
    Cpałka, K., Rutkowski, L.: Flexible takagi sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)Google Scholar
  9. 9.
    Duda, P., Jaworski, M., Pietruczuk, L.: On the application of fourier series density estimation for image classification based on feature description. In: Proceedings of the 8th International Conference on Knowledge, Information and Creativity Support Systems, Krakow, Poland, November 7-9, pp. 81–91 (2013)Google Scholar
  10. 10.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007), Special issue on Generative Model Based VisionGoogle Scholar
  11. 11.
    Gong, Y., Chuan, C.H., Xiaoyi, G.: Image indexing and retrieval based on color histograms. Multimedia Tools Appl. 2(2), 133–156 (1996)Google Scholar
  12. 12.
    Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(1), 215–228 (1983)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Irshad, H., Roux, L., Racoceanu, D.: Multi-channels statistical and morphological features based mitosis detection in breast cancer histopathology. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2013)Google Scholar
  14. 14.
    Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 729–736 (1995)CrossRefGoogle Scholar
  15. 15.
    Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face identification by sift-based complete graph topology. CoRR abs/1002.0411 (2010)Google Scholar
  16. 16.
    Laskowski, Ł.: Hybrid-maximum neural network for depth analysis from stereo-image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 47–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Laskowski, L.: A novel continuous dual mode neural network in stereo-matching process. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 294–297. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Najgebauer, P., Nowak, T., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image retrieval by dictionary of local feature descriptors. In: Proceedings of the 2014 International Joint Conference on Neural Networks, Beijing, July 6-11 (accepted for publication, 2014)Google Scholar
  19. 19.
    Nowicki, R.: Rough-neuro-fuzzy system with micog defuzzification. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1958–1965 (2006)Google Scholar
  20. 20.
    Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems. International Journal of Applied Mathematics and Computer Science 20(1), 55–67 (2010)CrossRefGoogle Scholar
  21. 21.
    Nowicki, R., Rutkowski, L.: Soft techniques for bayesian classification. In: Neural Networks and Soft Computing, pp. 537–544. Springer (2003)Google Scholar
  22. 22.
    Peteiro-Barral, D., Guijarro Bardinas, B., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)Google Scholar
  23. 23.
    Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive, 376–381 (2003)Google Scholar
  25. 25.
    Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of 2004 IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1031–1036 (July 2004)Google Scholar
  26. 26.
    Rutkowski, L.: Sequential estimates of probability densities by orthogonal series and their application in pattern classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-10(12), 918–920 (1980)MathSciNetGoogle Scholar
  27. 27.
    Rutkowski, L.: Sequential pattern recognition procedures derived from multiple fourier series. Pattern Recognition Letters 8(4), 213–216 (1988)CrossRefMATHGoogle Scholar
  28. 28.
    Rutkowski, L., Przybył, A., Cpałka, K., Er, M.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Starczewski, J.T.: A type-1 approximation of interval type-2 FLS. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 287–294. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)CrossRefGoogle Scholar
  31. 31.
    Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings of the Third International Conference on Computer Vision, pp. 390–393 (December 1990)Google Scholar
  32. 32.
    Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: The kernel recipe. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, vol. 2, pp. 257–264. IEEE Computer Society, Washington, DC (2003)Google Scholar
  33. 33.
    Wang, L., Ju, H.: A robust blob detection and delineation method. In: Proceedings of the 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, ETTANDGRS 2008, pp. 827–830. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  34. 34.
    Willamowski, J., Arregui, D., Csurka, G., Dance, C.R., Fan, L.: Categorizing nine visual classes using local appearance descriptors. In: ICPR Workshop on Learning for Adaptable Visual Systems (2004)Google Scholar
  35. 35.
    Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomasz Nowak
    • 1
  • Patryk Najgebauer
    • 1
  • Jakub Romanowski
    • 1
  • Marcin Gabryel
    • 1
  • Marcin Korytkowski
    • 1
  • Rafał Scherer
    • 1
  • Dimce Kostadinov
    • 2
  1. 1.Institute of Computational IntelligenceCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.Computer Science DepartmentUniversity of GenevaGenevaSwitzerland

Personalised recommendations