Three-Dimensional Urban-Type Scene Representation in Vision System of Unmanned Flying Vehicles

  • Andrzej Bielecki
  • Tomasz Buratowski
  • Piotr Śmigielski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)


In this paper a vision system for autonomous flying agents is considered in the context of industrial inspection tasks performed by unmanned aerial vehicles. A syntactic algorithm of a three-dimensional scene representation is proposed. The algorithm of creating three-dimensional single object representation has been tested by using artificial data. It has turned out to be effective.


autonomous flying agents structure projection 3D scene representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bielecka, M., Skomorowski, M., Bielecki, A.: Fuzzy syntactic approach to pattern recognition and scene analysis. In: Proceedings of the 4th International Conference on Informatics in Control, Automatics and Robotics ICINCO 2007, ICSO Intelligent Control Systems and Optimization, Robotics and Automation, vol. 1, pp. 29–35 (2007)Google Scholar
  2. 2.
    Bielecki, A., Buratowski, T., Śmigielski, P.: Syntactic algorithm of two-dimensional scene analysis for unmanned flying vehicles. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 304–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bielecki, A., Buratowski, T., Śmigielski, P.: Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Systems with Applications 40, 3623–3633 (2013)CrossRefGoogle Scholar
  4. 4.
    Filliat, D., Mayer, J.A.: Map-based navigation in mobile robots. A review of localization strategies. Journal of Cognitive Systems Research 4, 243–283 (2003)CrossRefGoogle Scholar
  5. 5.
    Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recognition 26, 1–16 (1993)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Muratet, L., Doncieux, S., Briere, Y., Meyer, J.A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and Autonomous Systems 50, 195–229 (2005)CrossRefGoogle Scholar
  7. 7.
    Pederson, L., Kortencamp, D., Wettergreen, D., Nourbakhsh, I.: A survey of space robotics. In: Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, Munich, Germany (2003)Google Scholar
  8. 8.
    Sinopoli, B., Micheli, M., Donato, G., Koo, T.J.: Vision based navigation for an unmanned aerial vehicle. In: Proceedings of the International Conference on Robotics and Automation ICRA, vol. 2, pp. 1757–1764 (2001)Google Scholar
  9. 9.
    Skomorowski, M.: Use of random graph parsing for scene labeling by probabilistic relaxation. Pattern Recognition Letters 20, 949–956 (1999)CrossRefGoogle Scholar
  10. 10.
    Skomorowski, M.: Syntactic recognition of syntactic patterns by means of random graph parsing. Pattern Recognition Letters 28, 572–581 (2006)CrossRefGoogle Scholar
  11. 11.
    Tadeusiewicz, R.: Vision Systems of Industrial Robots. WNT, Warszawa (1992)Google Scholar
  12. 12.
    Tadeusiewicz, R.: A visual navigation system for a mobile robot with limited computational requirements. Problemy Eksploatacji 4, 205–218 (2008)Google Scholar
  13. 13.
    Tadeusiewicz, R., Flasiński, M.: Pattern Recognition. Polish Scientific Publishers PWN, Warsaw (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrzej Bielecki
    • 1
  • Tomasz Buratowski
    • 2
  • Piotr Śmigielski
    • 3
  1. 1.Faculty of Electrical Engineering, Automation,Computer Science and Biomedical Engineering, Chair of Applied Computer ScienceAGH University of Science and TechnologyCracowPoland
  2. 2.Faculty of Mechanical Engineering and Robotics, Chair of Robotics and MechatronicsAGH University of Science and TechnologyCracowPoland
  3. 3.Asseco Poland S.A.CracowPoland

Personalised recommendations