Large-Scale Region-Based Multimedia Retrieval for Solar Images

  • Juan M. Banda
  • Rafal A. Angryk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)

Abstract

In this paper we present an extensive analysis into our task of expanding our Solar Dynamics Observatory (SDO) content-based image-retrieval (CBIR) system query capabilities with region-based search features. In this first-of-its-kind functionality, for solar physics, we will be taking advantage of pre-computed image descriptors in order to generate region-based histogram-like signatures from our training set of previously identified solar events. With these signatures we then retrieve new similar solar events solely based on these scale and rotation invariant signatures. In this paper we present our proposed methodology and our extensive experimental setup with retrieval results. Our multimedia retrieval mechanism will be extensively tested with multiple variants of our signatures, multiple similarity measures, and finally validated using classification algorithms.

Keywords

Multimedia Indexing and Retrieval Content-based Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banda, J.M., Schuh, M.A., Angryk, R.A., Pillai, K.G., McInerney, P.: Big data new frontiers: Mining, search and management of massive repositories of solar image data and solar events. In: Catania, B., Cerquitelli, T., Chiusano, S., Guerrini, G., Kämpf, M., Kemper, A., Novikov, B., Palpanas, T., Pokorny, J., Vakali, A. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241, pp. 151–158. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Martens, P., Attrill, G., Davey, A., Engell, A., et al.: Computer vision for the solar dynamics observatory (sdo). Solar Physics 275, 79–113 (2012)CrossRefGoogle Scholar
  3. 3.
    Banda, J., Angryk, R., Martens, P.: On dimensionality reduction for indexing and retrieval of large-scale solar image data. Solar Physics 283, 113–141 (2013)CrossRefGoogle Scholar
  4. 4.
    Banda, J., Angryk, R.: An experimental evaluation of popular image parameters for monochromatic solar image categorization. In: 23rd Inter. FLAIRS Conf., pp. 380–385 (2010)Google Scholar
  5. 5.
    Banda, J., Angryk, R.: On the effectiveness of fuzzy clustering as a data discretization technique for large-scale classification of solar images. In: Proceedings of the 18th IEEE International Conference on Fuzzy System, pp. 2019–2024 (2009)Google Scholar
  6. 6.
    Banda, J., Angryk, R.: Selection of image parameters as the first step towards creating a cbir system for the solar dynamics observatory. In: Digital Image Computing: Techniques and Applications (DICTA), pp. 528–534 (2010)Google Scholar
  7. 7.
    Banda, J., Angryk, R., Martens, P.: Steps toward a large-scale solar image data analysis to differentiate solar phenomena. Solar Physics, 1–28 (2013)Google Scholar
  8. 8.
    Banda, J., Liu, C., Angryk, R.: Region-based querying using descriptor signatures for solar physics. In: 2013 IEEE International Conference on Data Mining Workshops (ICDMW 2013) Astroinformatics Workshop (2013)Google Scholar
  9. 9.
    Chakravarti, R., Meng, X.: A study of color histogram based image retrieval. In: Sixth International Conference on Information Technology: New Generations, pp. 1323–1328 (2009)Google Scholar
  10. 10.
    Pentland, A., Picard, R., Sclaroff, S.: Photobook: Content-based manipulation of image databases. International Journal of Computer Vision 18(3), 233–254 (1996)CrossRefGoogle Scholar
  11. 11.
    Ogle, V., Stonebraker, M.: Chabot: Retrieval from a relational database of images. Computer, 40–48 (1995)Google Scholar
  12. 12.
    Kelly, P., Cannon, T., Hush, D.: Query by image example: the comparison algorithm for navigating digital image databases approach. In: Storage and Retrieval for Image and Video Databases, pp. 238–248 (1995)Google Scholar
  13. 13.
    Flickner, M., Sawhney, H.T.: Query by image and video content: The qbic system. Computer 28(9), 23–32 (1995)CrossRefGoogle Scholar
  14. 14.
    Carson, C., Thomas, M., et al.: Blobworld: A system for region-based image indexing and retrieval. In: Visual Information and Information Systems, pp. 509–517 (1999)Google Scholar
  15. 15.
    Banda, J., Anrgyk, R., Martens, P.: Imagefarmer introducing a framework for the creation of large-scale content-based image retrieval systems. International Journal of Computer Applications 79(13), 8–13Google Scholar
  16. 16.
    Lemen, J., Title, A., Akin, D.T.: The atmospheric imaging assembly (aia) on the solar dynamics observatory (sdo). Solar Physics 275(1-2), 17–40 (2012)CrossRefGoogle Scholar
  17. 17.
    Schuh, M., Angryk, R., Pillai, K., Banda, J., Martens, P.: A large-scale solar image dataset with labeled event regions. In: 20th IEEE Int. Conf. on Image Processing (ICIP), pp. 4349–4353 (2013)Google Scholar
  18. 18.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics 8(6), 460–473 (1978)CrossRefGoogle Scholar
  19. 19.
    Cao, W., Shi, Z., Feng, J.: Traffic image classification method based on fractal dimension. In: 5th IEEE International Conference on Cognitive Informatics, pp. 903–907 (2006)Google Scholar
  20. 20.
    Devendran, V., Thiagarajan, H., Wahi, A.: Svm based hybrid moment features for natural scene categorization. In: International Conference on Computational Science and Engineering, pp. 356–361 (2009)Google Scholar
  21. 21.
    Banda, J.M., Schuh, M.A., Wylie, T., McInerney, P., Angryk, R.A.: When too similar is bad: A practical example of the solar dynamics observatory content-based image-retrieval system. In: Catania, B., Cerquitelli, T., Chiusano, S., Guerrini, G., Kämpf, M., Kemper, A., Novikov, B., Palpanas, T., Pokorny, J., Vakali, A. (eds.) New Trends in Databases and Information Systems. AISC, vol. 241, pp. 87–95. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Hoaglin, D., Mosteller, F., Tukey, J.: Understanding robust and exploratory data analysis (1983)Google Scholar
  23. 23.
    Banda, J., Angryk, R., Martens, P.: On the surprisingly accurate transfer of image parameters between medical and solar images. In: 18th IEEE Int. Conf. on Image Processing, pp. 3669–3672 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan M. Banda
    • 1
  • Rafal A. Angryk
    • 2
  1. 1.Montana State UniversityUSA
  2. 2.Georgia State UniversityUSA

Personalised recommendations