Advertisement

Multi-chaotic Differential Evolution: A Preliminary Study

  • Roman Senkerik
  • Michal Pluhacek
  • Ivan Zelinka
  • Donald Davendra
  • Zuzana Kominková Oplatková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)

Abstract

This research deals with the initial investigations on the concept of a multi-chaos-driven evolutionary algorithm Differential Evolution (DE). This paper is aimed at the embedding and alternating of set of two discrete dissipative chaotic systems in the form of chaos pseudo random number generator for DE. Repeated simulations were performed on the selected test function in higher dimensions. Finally, the obtained results are compared with canonical DE.

Keywords

Differential Evolution Deterministic chaos Dissipative systems Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd. (1999)Google Scholar
  2. 2.
    Senkerik, R., Pluhacek, M., Zelinka, I., Oplatkova, Z.K., Vala, R., Jasek, R.: Performance of Chaos Driven Differential Evolution on Shifted Benchmark Functions Set. In: Herrero, A., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 41–50. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Kominkova Oplatkova, Z.: On the Differential Evolution Driven by Selected Discrete Chaotic Systems: Extended Study. In: 19th International Conference on Soft Computing, MENDEL 2013, pp. 137–144 (2013)Google Scholar
  4. 4.
    Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications 37(7), 5285–5294 (2010)CrossRefGoogle Scholar
  5. 5.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  6. 6.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Zelinka, I.: SOMA — Self-Organizing Migrating Algorithm. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Liang, W., Zhang, L., Wang, M.: The chaos differential evolution optimization algorithm and its application to support vector regression machine. Journal of Software 6(7), 1297–1304 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhenyu, G., Bo, C., Min, Y., Binggang, C.: Self-Adaptive Chaos Differential Evolution. In: Jiao, L., Wang, L., Gao, X.-B., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 972–975. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  11. 11.
    Hong, W.-C.: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management 50(1), 105–117 (2009)CrossRefGoogle Scholar
  12. 12.
    Senkerik, R., Pluhacek, M., Oplatkova, Z.K., Davendra, D., Zelinka, I.: Investigation on the Differential Evolution driven by selected six chaotic systems in the task of reactor geometry optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 3087–3094 (2013)Google Scholar
  13. 13.
    Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), April 16-19, pp. 119–126 (2013)Google Scholar
  14. 14.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66(2), 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2444–2449 (2013)Google Scholar
  16. 16.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Multiple Choice Strategy Based PSO Algorithm with Chaotic Decision Making – A Preliminary Study. In: Herrero, A., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 21–30. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  18. 18.
    ELabbasy, E., Agiza, H., EL-Metwally, H., Elsadany, A.: Bifurcation Analysis, Chaos and Control in the Burgers Mapping. International Journal of Nonlinear Science 4(3), 171–185 (2007)MathSciNetGoogle Scholar
  19. 19.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Ivan Zelinka
    • 2
  • Donald Davendra
    • 2
  • Zuzana Kominková Oplatková
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations