Application of Models of Relational Fuzzy Cognitive Maps for Prediction of Work of Complex Systems

  • Grzegorz Słoń
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)


The paper presents certain aspects of application of model of the Relational Fuzzy Cognitive Map (RFCM) for advanced analysis of activity of complex dynamic systems. Intelligent models, including various types of cognitive maps, are commonly used to study the effect of the selected parameter on the others or to classification of objects described by many parameters. RFCM model characteristics, in addition to the above uses, allows to use it also for modeling the work of systems with the internal dynamics. It follows that such a model can be used to predict the state of the system in the future steps of a discrete time. In the paper, selected results of testing just such a use of the RFCM model are described.


relational fuzzy cognitive map intelligent modeling fuzzy relations fuzzy numbers arithmetic of fuzzy numbers prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carvalho, J.P., Tom, J.A.: Rule-based fuzzy cognitive maps - Expressing Time in Qualitative System Dynamics. In: Proc. of the FUZZ-IEEE 2001, Melbourne, Australia, pp. 280–283 (2001)Google Scholar
  2. 2.
    Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. Presence 3(2), 173–189 (1994)Google Scholar
  3. 3.
    Kosko, B.: Fuzzy cognitive maps. Int. Journal of Man-Machine Studies 24, 65–75 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Łachwa, A.: Fuzzy world of sets, numbers, relations, facts, rules and decisions. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2001) (in Polish)Google Scholar
  5. 5.
    Papageorgiou, E.I.: Learning Algorithms for Fuzzy Cognitive Maps - A Review Study. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 42(2), 150–163 (2012)CrossRefGoogle Scholar
  6. 6.
    Papageorgiou, E.I., Froelich, W.: Multi-step prediction of pulmonary infection with the use of evolutionary fuzzy cognitive maps. Neurocomputing (92/2012), 28–35 (2012)Google Scholar
  7. 7.
    Rutkowska, D., Piliński, M., Rutkowski, L.: Neural networks, genetic algorithms and fuzzy systems. PWN, Warsaw (1997) (in Polish)Google Scholar
  8. 8.
    Rutkowski, L.: Methods and techniques of artificial intelligence. PWN, Warsaw (2005) (in Polish)Google Scholar
  9. 9.
    Siraj, A., Bridges, S.M., Vaughn, R.B.: Fuzzy Cognitive Maps for Decision Support in an Intelligent Intrusion Detection System. In: IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, pp. 2165–2170 (2001)Google Scholar
  10. 10.
    Słoń, G.: Relational Fuzzy Cognitive Maps in Complex Systems Modeling. Wydawnictwo Politechniki Świetokrzyskiej, Kielce (2013) (in Polish)Google Scholar
  11. 11.
    Słoń, G.: The Use of Fuzzy Numbers in the Process of Designing Relational Fuzzy Cognitive Maps. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 376–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Słoń, G., Yastrebov, A.: Optimization and Adaptation of Dynamic Models of Fuzzy Relational Cognitive Maps. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 95–102. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Stylios, C.D., Groumpos, P.P.: Fuzzy cognitive maps in modeling supervisory control systems. Journal of Intelligent & Fuzzy Systems 8(2), 83–98 (2000)Google Scholar
  14. 14.
    Takagi, H., Sugeno, M.: Fuzzy Identification of Systems and Its Application to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics SMC-15(1), 116–132 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Grzegorz Słoń
    • 1
  1. 1.Kielce University of TechnologyKielcePoland

Personalised recommendations