Advertisement

Type Soundness and Race Freedom for Mezzo

  • Thibaut Balabonski
  • François Pottier
  • Jonathan Protzenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8475)

Abstract

The programming language Mezzo is equipped with a rich type system that controls aliasing and access to mutable memory. We incorporate shared-memory concurrency into Mezzo and present a modular formalization of its core type system, in the form of a concurrent λ-calculus, which we extend with references and locks. We prove that well-typed programs do not go wrong and are data-race free. Our definitions and proofs are machine-checked.

Keywords

Machine State Operational Semantic Typing Rule Type Soundness Separation Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, A., Fluet, M., Morrisett, G.: L 3: A linear language with locations. Fundamenta Informaticæ 77(4), 397–449 (2007)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Balabonski, T., Pottier, F.: A Coq formalization of Mezzo (December 2013), http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz
  3. 3.
    Buisse, A., Birkedal, L., Støvring, K.: A step-indexed Kripke model of separation logic for storable locks. Electronic Notes in Theoretical Computer Science 276, 121–143 (2011)CrossRefGoogle Scholar
  4. 4.
    Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities. In: International Conference on Functional Programming (ICFP), pp. 213–224 (2008)Google Scholar
  5. 5.
    Chlipala, A.: Certified Programming and Dependent Types. MIT Press (2013)Google Scholar
  6. 6.
    Delaware, B., Oliveira, B.C.D.S., Schrijvers, T.: Meta-theory à La Carte. In: Principles of Programming Languages (POPL), pp. 207–218 (2013)Google Scholar
  7. 7.
    Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: compositional reasoning for concurrent programs. In: Principles of Programming Languages (POPL), pp. 287–300 (2013)Google Scholar
  8. 8.
    Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable locks and threads. Tech. Rep. MSR-TR-2007-39, Microsoft Research (2007)Google Scholar
  9. 9.
    Mosses, P.D.: Modular structural operational semantics. Journal of Logic and Algebraic Programming 60, 195–228 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer Science 375(1-3), 271–307 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pottier, F.: Syntactic soundness proof of a type-and-capability system with hidden state. Journal of Functional Programming 23(1), 38–144 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Pottier, F., Protzenko, J.: Programming with permissions in Mezzo. In: International Conference on Functional Programming (ICFP), pp. 173–184 (2013)Google Scholar
  13. 13.
    Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in Computer Science (LICS), pp. 55–74 (2002)Google Scholar
  14. 14.
    Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning in a logic for higher-order concurrency. In: International Conference on Functional Programming (ICFP), pp. 377–390 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thibaut Balabonski
    • 1
  • François Pottier
    • 1
  • Jonathan Protzenko
    • 1
  1. 1.INRIA Paris-RocquencourtFrance

Personalised recommendations