Advertisement

Weighted Distances on a Triangular Grid

  • Benedek Nagy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8466)

Abstract

In this paper we introduce weighted distances on a triangular grid. Three types of neighborhood relations are used on the grid, and therefore three weights are used to define a distance function. Some properties of the weighted distances, including metrical properties are discussed. We also give algorithms that compute the weighted distance of any point-pair on a triangular grid. Formulae for computing the distance are also given. Therefore the introduced new distance functions are ready for application in image processing and other fields.

Keywords

Triangular grid Digital distances Shortest paths Digital metrics Weighted distances Chamfer distances Distance map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Generalised distances in digital geometry. Inform. Sci. 42, 51–67 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geometry. Inform. Sci. 42, 113–136 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Comm. of the ACM 15, 827–837 (1972)CrossRefGoogle Scholar
  4. 4.
    Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recognition 40, 2453–2474 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. on Image Proc. 4, 1213–1221 (1995)CrossRefGoogle Scholar
  6. 6.
    Klette, R., Rosenfeld, A.: Digital geometry. Geometric methods for digital picture analysis. Morgan Kaufmann Publishers, Elsevier Science B.V., San Francisco, Amsterdam (2004)zbMATHGoogle Scholar
  7. 7.
    Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. Trans. on Computers C-25(5), 532–533 (1976)Google Scholar
  8. 8.
    Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Springer, London (2005)Google Scholar
  9. 9.
    Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. Journal of Computing and Information Technology 11, 111–122 (2003)CrossRefGoogle Scholar
  10. 10.
    Nagy, B.: Digital geometry of various grids based on neighbourhood structures. In: KEPAF 2007 – 6th Conference of Hungarian Association for Image Processing and Pattern Recognition, Debrecen, Hungary, pp. 46–53 (2007)Google Scholar
  11. 11.
    Nagy, B.: Distances with neighbourhood sequences in cubic and triangular grids. Pattern Recognition Letters 28, 99–109 (2007)CrossRefGoogle Scholar
  12. 12.
    Nagy, B.: Distance with generalised neighbourhood sequences in nD and ∞D. Disc. Appl. Math. 156, 2344–2351 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: ISPA 2009 – 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria, pp. 432–437 (2009)Google Scholar
  14. 14.
    Nagy, B.: Distances based on neighborhood sequences in the triangular grid. In: Computational Mathematics: Theory, Methods and Applications, pp. 313–351. Nova Science Publishers (2011)Google Scholar
  15. 15.
    Nagy, B., Strand, R., Normand, N.: A weight sequence distance function. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 292–301. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Russel, S.J., Norvig, P.: Artificial intelliegence: a modern approach. Prentice Hall (1995)Google Scholar
  18. 18.
    Sintorn, I.-M., Borgefors, G.: Weighted distance transforms in rectangular grids. In: ICIAP 2001, pp. 322–326 (2001)Google Scholar
  19. 19.
    Svensson, S., Borgefors, G.: Distance transforms in 3D using four different weights. Pattern Recognition Letters 23, 1407–1418 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Yamashita, M., Ibaraki, T.: Distances defined by neighborhood sequences. Pattern Recognition 19, 237–246 (1986)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benedek Nagy
    • 1
    • 2
  1. 1.Department of Mathematics, Faculty of Arts and SciencesEastern Mediterranean UniversityFamagustaTurkey
  2. 2.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations