What Is Visualization Really For?

  • Min ChenEmail author
  • Luciano Floridi
  • Rita Borgo
Part of the Synthese Library book series (SYLI, volume 358)


Whenever a visualization researcher is asked about the purpose of visualization, the phrase “gaining insight” by and large pops out instinctively. However, it is not absolutely factual that all uses of visualization are for gaining a deep understanding, unless the term insight is broadened to encompass all types of thought. Even when insight is the focus of a visualization task, it is rather difficult to know what insight is gained, how much, or how accurate. In this paper, we propose that “saving time” in accomplishing a user’s task is the most fundamental objective. By giving emphasis to “saving time”, we can establish a concrete metric, alleviate unnecessary contention caused by different interpretations of insight, and stimulate new research efforts in some aspects of visualization, such as empirical studies, design optimization and theories of visualization.


Cognitive Load Visual Representation Line Graph External Memorization Information Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., & Brooks, C. (2010). Useful junk?: The effects of visual embellishment on comprehension and memorability of charts. In Proceedings of ACM CHI, pp. 2573–2582. Google Scholar
  2. Borgo, R., Abdul-Rahman, A., Mohamed, F., Grant, P. W., Reppa, I., Floridi, L., & Chen, M. (2012). An empirical study on using visual embellishments in visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2759–2768.CrossRefGoogle Scholar
  3. Botchen, R. P., Bachthaler, S., Schick, F., Chen, M., Mori, G., Weiskopf, D. & Ertl, T. (2008). Action-based multi-field video visualization. IEEE Transactions on Visualization and Computer Graphics, 14(4), 885–899.Google Scholar
  4. Card, S. (2008). Information visualization. In A. Sears & J. A. Jacko (Eds.), The human-computer interaction handbook. Mahwah: Lawrence Erlbaum Assoc Inc.Google Scholar
  5. Card, S., Mackinlay, J., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann Publishers.Google Scholar
  6. Chen, M., & Jänicke, H. (2010). An information-theoretic framework for visualization. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1206–1215.CrossRefGoogle Scholar
  7. Chen, M., Botchen, R. P., Hashim, R. R., Weiskopf, D., Ertl, T., & Thornton, I. M. (2006). Visual signatures in video visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 1093–1100.CrossRefGoogle Scholar
  8. Cleveland, W. S. (1985). The elements of graphic data. Pacific Grove: Brooks Cole.Google Scholar
  9. Cui, Q., Yang, J., Ward, M., & Rundensteiner, E. (2006). Measuring data abstraction quality in multiresolution visualizations. IEEE Transactions on Visualization and Computer Graphics, 12(5), 709–716.CrossRefGoogle Scholar
  10. Drocourt, Y., Borgo, R., Scharrer, K., Murray, T., Bevan, S. I., & Chen, M. (2011). Temporal visualization of boundary-based geo-information using radial projection. Computer Graphics Forum, 30(3), 981–990.CrossRefGoogle Scholar
  11. Earnshaw, R. A., & Wiseman, N. (1992). An introduction to scientific visualization. In K. W. Brodlie et al. (Eds.), Scientific visualization, techniques and applications. Berlin/New York: Springer.Google Scholar
  12. Few, S. (2009). Now you see it. Oakland: Analytics Press.Google Scholar
  13. Few, S. (2011a). The chartjunk debate: A close examination of recent findings.
  14. Few, S. (2011b). Benefitting InfoVis with visual difficulties? Provocation without a cause.
  15. Friedhoff, R. M., & Kiley, T. (1990). The eye of the beholder. Computer Graphics World, 13(8), 46.Google Scholar
  16. Friendly, M. (2008). A brief history of data visualization. In Handbook of Data Visualization (pp. 15–56). Springer Handbooks of Computational Statistics. Heidelberg: Springer.CrossRefGoogle Scholar
  17. Funkhouser, H. G. (1936). A note on a tenth century graph. Osiris, 1, 260–262.CrossRefGoogle Scholar
  18. Gomez, S. R., Jianu, R., Ziemkiewicz, C., Guo, H., & Laidlaw, D. H. (2012). Different strokes for different folks: Visual presentation design between disciplines. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2411–2420.CrossRefGoogle Scholar
  19. Hearst, M. A. (2009). Search user interfaces. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  20. Holmes, N. (1984). Designer’s guide to creating charts and diagrams. New York: Watson-Guptill Publications.Google Scholar
  21. Hsu, C.-H., Ahrens, J. P., & Heitmann, K. (2010). Verification of the time evolution of cosmological simulations via hypothesis-driven comparative and quantitative visualization. In Proceedings of IEEE Pacific Visualization Symposium, pp. 81–88.Google Scholar
  22. Hullman, J., Adar, E., & Shah, P. (2011). Benefitting InfoVis with visual difficulties. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2213–2222.CrossRefGoogle Scholar
  23. Jänicke, H., & Chen, M. (2010). A salience-based quality metric for visualization. Computer Graphics Forum, 29(3), 1183–1192.CrossRefGoogle Scholar
  24. Jänicke, H., Weidner, T., Chung, D., Laramee, R. S., Townsend, P., & Chen, M. (2011). Visual reconstructability as a quality metric for flow visualization. Computer Graphics Forum, 30(3), 781–790.CrossRefGoogle Scholar
  25. Kehrer, J., Ladstädter, F., Muigg, P., Doleisch, H., Steiner, A., & Hauser, H. (2008). Hypothesis generation in climate research with interactive visual data exploration. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1579–1586.CrossRefGoogle Scholar
  26. Marty, R. (2009). Applied security visualization. Upper Saddle River: Addison-Wesley.Google Scholar
  27. McCormick, B. H., DeFanti, T. A., & Brown, M. D. (Eds.). (1987). Visualization in scientific computing. In ACM SIGGRAPH Computer Graphics, New York, Vol. 21, p. 6.Google Scholar
  28. Owen, G. S. (1999). HyperVis – Teaching scientific visualization using hypermedia. ACM SIGGRAPH Education Committee.
  29. Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., & Ward, M. (2008). Theoretical foundations of information visualization. In A. Kerren et al. (Eds.), Information visualization: Human-centered issues and perspectives (Lecture notes in computer science, Vol. 4950, pp. 46–64). Berlin/New York: Springer.CrossRefGoogle Scholar
  30. Senay, H., & Ignatius, E. (1994). A knowledge-based system for visualization design. IEEE Computer Graphics and Applications, 14(6), 36–47.CrossRefGoogle Scholar
  31. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
  32. Spence, R. (2007). Information visualization: Design for interaction. Harlow: Pearson.Google Scholar
  33. Styles, E. (2006). The psychology of attention. Cambridge: Psychology Press.Google Scholar
  34. Telea, A. C. (2008). Data visualization, principles and practice. Wellesley: A K Peters.Google Scholar
  35. Teoh, S. T., Ma, K.-L., & Wu, S. F. (2003). A visual exploration process for the analysis of Internet routing data. In Proceedings of IEEE Visualization, 523–530.Google Scholar
  36. Thomas, J. J., & Cook, K. A. (Eds.). (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center.
  37. Tsotsos, J. K. (1989). The complexity of perceptual search tasks. In Proceedings of 11th International Conference on Artificial Intelligence, Detroit, pp. 1571–1577.Google Scholar
  38. Tufte, E. R. (2001). The visual display of quantitative information. Cheshire: Graphics Press.Google Scholar
  39. U. C. Berkeley, School of Information. (2010). Information visualization showcase, Events Archive (also in course information for i247).
  40. Ware, C. (2004). Information visualization: Perception for design. San Francisco: Morgan Kaufmann.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of OxfordOxfordUK
  2. 2.Oxford Internet InstituteUniversity of OxfordOxfordUK
  3. 3.Swansea UniversitySwanseaUK

Personalised recommendations