Advertisement

Tunneling of a Many-Boson System to Open Space with a Threshold

  • Axel U. J. LodeEmail author
Chapter
  • 371 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter uses the findings and conjectures of the previous two Chaps. 5 and  6 regarding the tunneling to open space process of many-body systems whereby the process may be controlled. It is shown that through two parameters, the inter-particle interaction strength and the potential threshold, one can control the number of ejected particles as well as the momentum distributions and even the dynamics of the correlations in the decay process. Implications for the use of the system as a quantum simulator for complicated ionization processes as well as connections to atom laser experiments are discussed.

Keywords

Momentum Distribution Counting Statistic Tunneling Process Atom Laser Model Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Caption of the video object (MP4 3184 kb)

325918_1_En_7_MOESM2_ESM.mpg (3.1 mb)
Caption of the video object (MP4 6063 kb)
325918_1_En_7_MOESM3_ESM.mpg (3.1 mb)
Caption of the video object (MP4 3142 kb)

References

  1. 1.
    A.U.J. Lode, S. Klaiman, O.E. Alon, A.I. Streltsov, S. Lorenz Cederbaum, Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics. Phys. Rev. A 89, 053620 (2014)Google Scholar
  2. 2.
    A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Correlations and Counting Statistics of an Atom Laser. Phys. Rev. Lett. 95, 090404 (2005)Google Scholar
  3. 3.
    I. Bloch, T.W. Hänsch, T. Esslinger, Atom Laser with a cw Output Coupler. Phys. Rev. Lett. 82, 3008 (1999)Google Scholar
  4. 4.
    M. Köhl, T. Busch, K. Mølmer, T.W. Hänsch, T. Esslinger, Observing the profile of an atom laser beam. Phys. Rev. A 72, 063618 (2005)Google Scholar
  5. 5.
    W. Ketterle, Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)Google Scholar
  6. 6.
    W. Ketterle, H.-J. Miesner, Coherence properties of Bose-Einstein condensates and atom lasers. Phys. Rev. A 56, 3291 (1997)Google Scholar
  7. 7.
    R. Hanbury Brown, R.Q. Twiss, A Test of a New Type of Stellar Interferometer on Sirius. Nature 178, 1046–1048 (1956)Google Scholar
  8. 8.
    R. Hanbury Brown, R.Q. Twiss, Interferometry of the Intensity Fluctuations in Light. I. Basic Theory: The Correlation between Photons in Coherent Beams of Radiation. Proc. Roy. Soc. London A 242 (1230), 300–324 (1957)Google Scholar
  9. 9.
    R. Hanbury Brown, R.Q. Twiss, Interferometry of the Intensity Fluctuations in Light. II. An Experimental Test of the Theory for Partially Coherent Light. Proc. Roy. Soc. London A 243(1234), 291–319 (1958)Google Scholar
  10. 10.
    A.I. Streltsov, K. Sakmann, A.U.J. Lode, O.E. Alon, L.S. Cederbaum, The Multiconfigurational Time-Dependent Hartree for Bosons Package, version 2.3, Heidelberg (2012), see http://mctdhb.uni-hd.de

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Condensed Matter Theory and Quantum Computing GroupUniversity of BaselBaselSwitzerland

Personalised recommendations