Opening Statistics and Match Play for Backgammon Games

  • Nikolaos Papahristou
  • Ioannis Refanidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8445)

Abstract

Players of complex board games like backgammon, chess and go, were always wondering what the best opening moves for their favourite game are. In the last decade, computer analysis has offered more insight to many opening variations. This is especially true for backgammon, where computer rollouts have radically changed the way human experts play the opening. In this paper we use Palamedes, the winner of the latest computer backgammon Olympiad, to make the first ever computer assisted analysis of the opening rolls for the backgammon variants Portes, Plakoto and Fevga (collectively called Tavli in Greece). We then use these results to build effective match strategies for each game variant.

Keywords

Monte Carlo Game Statistics Match play Backgammon Plakoto Fevga 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial Intelligence 66, 91–124 (1994) ISSN 0004-3702CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cazenave, T., Saffidine, A.: Score Bounded Monte-Carlo Tree Search. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 93–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 259–264 (2008)Google Scholar
  5. 5.
    Gelly, S., Silver, D.: Achieving master level play in 9 x 9 computer Go. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1537–1540. AAAI Press (2008)Google Scholar
  6. 6.
    Keith, T.: Backgammon openings. Rollouts of opening moves (2006), http://www.bkgm.com/openings/rollouts.html (accessed August 26, 2013)
  7. 7.
    Lorentz, R.J.: Amazons discover Monte-Carlo. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Papahristou, N., Refanidis, I.: On the Design and Training of Bots to Play Backgammon Variants. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012. IFIP AICT, vol. 381, pp. 78–87. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Papahristou, N., Refanidis, I.: Training Neural Networks to Play Backgammon Variants Using Reinforcement Learning. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 113–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Saito, J.T., Chaslot, G., Uiterwijk, J.W.H.M., van den Herik, H.J.: Monte-Carlo proof-number search for computer Go. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 50–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Indroduction. MIT Press (1998)Google Scholar
  12. 12.
    Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial Intelligence 134, 181–199 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Winands, M.H.M., Björnsson, Y., Saito, J.T.: Monte-Carlo tree search solver. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 25–36. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Winands, M.H.M., Björnsson, Y.: Evaluation Function Based Monte-Carlo LOA. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikolaos Papahristou
    • 1
  • Ioannis Refanidis
    • 1
  1. 1.Dept. of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations