Event Recognition for Unobtrusive Assisted Living

  • Nikos Katzouris
  • Alexander Artikis
  • Georgios Paliouras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8445)


Developing intelligent systems towards automated clinical monitoring and assistance for the elderly is attracting growing attention. USEFIL is an FP7 project aiming to provide health-care assistance in a smart-home setting. We present the data fusion component of USEFIL which is based on a complex event recognition methodology. In particular, we present our knowledge-driven approach to the detection of Activities of Daily Living (ADL) and functional ability, based on a probabilistic version of the Event Calculus. To investigate the feasibility of our approach, we present an empirical evaluation on synthetic data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artikis, A., Sergot, M., Paliouras, G.: A logic programming approach to activity recognition. In: Proceedings of the 2nd ACM International Workshop on Events in Multimedia, pp. 3–8. ACM (2010)Google Scholar
  2. 2.
    Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier, A., Pontelli, E. (eds.) GULP. LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Botia, J.A., Villa, A., Palma, J.: Ambient assisted living system for in-home monitoring of healthy independent elders. Expert Systems with Applications 39(9), 8136–8148 (2012)CrossRefGoogle Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 100(8), 677–691 (1986)CrossRefGoogle Scholar
  5. 5.
    Chahuara, P., Portet, F., Vacher, M.: Context aware decision system in a smart home: Knowledge representation and decision making using uncertain contextual information. In: ARCOE 2012, p. 52 (2012)Google Scholar
  6. 6.
    Chahuara, P., Portet, F., Vacher, M.: Making context aware decision from uncertain information in a smart home: A markov logic network approach. In: Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.-H. (eds.) AmI 2013. LNCS, vol. 8309, pp. 78–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Transactions on Knowledge and Data Engineering 24(6), 961–974 (2012)CrossRefGoogle Scholar
  8. 8.
    Collin, C., Wade, D.T., Davies, S., Horne, V.: The barthel ADL index: a reliability study. Disability & Rehabilitation 10(2), 61–63 (1988)CrossRefGoogle Scholar
  9. 9.
    Dalal, S., Alwan, M., Seifrafi, R., Kell, S., Brown, D.: A rule-based approach to the analysis of elders activity data: Detection of health and possible emergency conditions. In: AAAI Fall 2005 Symposium (2005)Google Scholar
  10. 10.
    Etzion, O., Niblett, P.: Event processing in action. Manning Publications Co. (2010)Google Scholar
  11. 11.
    Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using weighted boolean formulas. To Appear in Theory and Practice of Logic Programming, TPLP arXiv preprint arXiv:1304.6810 (2013)Google Scholar
  12. 12.
    Filippaki, C., Antoniou, G., Tsamardinos, I.: Using constraint optimization for conflict resolution and detail control in activity recognition. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 51–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language problog. Theory and Practice of Logic Programming 11(2-3), 235–262 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Foundations of Knowledge Base Management, pp. 23–55. Springer (1989)Google Scholar
  15. 15.
    Mileo, A., Merico, D., Bisiani, R.: Reasoning support for risk prediction and prevention in independent living. Theory and Practice of Logic Programming 11(2-3), 361–395 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)CrossRefGoogle Scholar
  17. 17.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the Twelfth International Conference on Logic Programming (ICLP 1995), pp. 715–729 (1995)Google Scholar
  18. 18.
    Skarlatidis, A., Artikis, A., Filippou, J., Paliouras, G.: A probabilistic logic programming event calculus. Journal of Theory and Practice of Logic Programming, TPLP (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikos Katzouris
    • 1
    • 2
  • Alexander Artikis
    • 1
  • Georgios Paliouras
    • 1
  1. 1.Institute of Informatics & TelecommunicationsNational Center for Scientific Research ’Demokritos’Greece
  2. 2.Department of Informatics & TelecommunicationsNational Kapodistrian University of AthensGreece

Personalised recommendations