Sequential Sparse Adaptive Possibilistic Clustering

  • Spyridoula D. Xenaki
  • Konstantinos D. Koutroumbas
  • Athanasios A. Rontogiannis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8445)


Possibilistic clustering algorithms have attracted considerable attention, during the last two decades. A major issue affecting the performance of these algorithms is that they involve certain parameters that need to be estimated accurately beforehand and remain fixed during their execution. Recently, a possibilistic clustering scheme has been proposed that allows the adaptation of these parameters and imposes sparsity in the sense that it forces the data points to “belong” to only a few (or even none) clusters. The algorithm does not require prior knowledge of the exact number of clusters but, rather, only a crude overestimate of it. However, it requires the estimation of two additional parameters. In this paper, a sequential version of this scheme is proposed, which possesses all the advantages of its ancestor and in addition, it requires the (crude) estimation of just a single parameter. Simulation results are provided that show the effectiveness of the proposed algorithm.


possibilistic clustering parameter adaptivity sparsity sequential processing k-means fuzzy c-means 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezdek, J.C.: A convergence theorem for the fuzzy Isodata clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 1–8 (1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum (1981)Google Scholar
  3. 3.
    Corliss, G.: Which Root Does the Bisection Algorithm Find? Siam Review 19, 325–327 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Egecioglu, O., Kalantari, B.: Approximating the diameter of a set of points in the Euclidean space. Information Processing Letters 32, 205–211 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Franti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recognition 39(5), 761–765 (2006)CrossRefGoogle Scholar
  6. 6.
    Hullermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing Fuzzy Partitions: A Generalization of the Rand Index and Related Measures. IEEE Transactions on Fuzzy Systems 20, 546–556 (2012)CrossRefGoogle Scholar
  7. 7.
    Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)CrossRefGoogle Scholar
  8. 8.
    Krishnapuram, R., Keller, J.M.: The possibilistic c-means algorithm: Insights and recommendations. IEEE Transactions on Fuzzy Systems 4(3), 385–393 (1996)CrossRefGoogle Scholar
  9. 9.
    Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman Hall. London (2005)Google Scholar
  10. 10.
    Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A Possibilistic Fuzzy c-Means Clustering Algorithm. IEEE Transactions on Fuzzy Systems 13, 517–530 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Treerattanapitak, K., Jaruskulchai, C.: Possibilistic exponential fuzzy clustering. Journal of Computer Science 28, 311–321 (2013)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2009)Google Scholar
  13. 13.
  14. 14.
    Xenaki, S.D., Koutroumbas, K.D., Rontogiannis, A.A.: Adaptive possibilistic clustering. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, ISSPIT (2013)Google Scholar
  15. 15.
    Xenaki, S.D., Koutroumbas, K.D., Rontogiannis, A.A.: Sparse adaptive possibilistic clustering. In: Proceedings of the IEEE International Conference of Acoustic Speech and Signal Processing, ICASSP (2014)Google Scholar
  16. 16.
    Yang, M.-S., Wu, K.-L.: Unsupervised possibilistic clustering. Pattern Recognition 39, 5–21 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.-S., Leung, Y.-W.: Improved Possibilistic C-Means Clustering Algorithms. IEEE Transactions on Fuzzy Systems 12, 209–217 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Spyridoula D. Xenaki
    • 1
  • Konstantinos D. Koutroumbas
    • 1
  • Athanasios A. Rontogiannis
    • 1
  1. 1.IAASARSNational Observatory of AthensPenteliGreece

Personalised recommendations