Advertisement

Sentiment Analysis for Reputation Management: Mining the Greek Web

  • Georgios Petasis
  • Dimitrios Spiliotopoulos
  • Nikos Tsirakis
  • Panayiotis Tsantilas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8445)

Abstract

Harvesting the web and social web data is a meticulous and complex task. Applying the results to a successful business case such as brand monitoring requires high precision and recall for the opinion mining and entity recognition tasks. This work reports on the integrated platform of a state of the art Named-entity Recognition and Classification (NERC) system and opinion mining methods for a Software-as-a-Service (SaaS) approach on a fully automatic service for brand monitoring for the Greek language. The service has been successfully deployed to the biggest search engine in Greece powering the large-scale linguistic and sentiment analysis of about 80.000 resources per hour.

Keywords

Sentiment Analysis Opinion Polarity Thematic Domain Name Entity Recognition Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., Spyropoulos, C.D.: Ellogon: A New Text Engineering Platform. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002), May 29-31, pp. 72–78. European Language Resources Association, Las Palmas (2002)Google Scholar
  2. 2.
    Tjong Kim Sang, E.F.: Introduction to the conll-2002 shared task: Language-independent named entity recognition. In: Proceedings of the 6th Conference on Natural Language Learning, COLING 2002, vol. 20, pp. 1–4. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  3. 3.
    Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, pp. 142–147. Association for Computational Linguistics, Stroudsburg (2003)CrossRefGoogle Scholar
  4. 4.
    Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S., Weischedel, R.M.: The automatic content extraction (ace) program - tasks, data, and evaluation. In: LREC. European Language Resources Association (2004)Google Scholar
  5. 5.
    Ji, H., Grishman, R., Dang, H.: Overview of the TAC 2011 Knowledge Base Population Track. In: TAC 2011 Proceedings Papers (2011)Google Scholar
  6. 6.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30, 3–26 (2007)CrossRefGoogle Scholar
  7. 7.
    Karkaletsis, V., Fragkou, P., Petasis, G., Iosif, E.: Ontology Based Information Extraction from Text. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Information Extraction. LNCS (LNAI), vol. 6050, pp. 89–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology Population and Enrichment: State of the Art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Information Extraction. LNCS (LNAI), vol. 6050, pp. 134–166. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Iosif, E., Petasis, G., Karkaletsis, V.: Ontology-Based Information Extraction under a Bootstrapping Approach, ch. 1, pp. 1–21. IGI Global, Hershey (2012)Google Scholar
  10. 10.
    Petasis, G., Paliouras, G., Spyropoulos, C.D., Halatsis, C.: Eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 223–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Petasis, G., Paliouras, G., Karkaletsis, V., Halatsis, C., Spyropoulos, C.D.: E-GRIDS: Computationally Efficient Grammatical Inference from Positive Examples. GRAMMARS 7, 69–110 (2004); Technical Report referenced in the paper: http://www.ellogon.org/petasis/bibliography/GRAMMARS/GRAMMARS2004-SpecialIssue-Petasis-TechnicalReport.pdf
  12. 12.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  13. 13.
    Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003, vol. 1, pp. 134–141. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  14. 14.
    Sutton, C., McCallum, A.: An introduction to conditional random fields. Foundations and Trends in Machine Learning 4(4), 267–373 (2012)CrossRefGoogle Scholar
  15. 15.
    Mihalcea, R.: Using wikipedia for automatic word sense disambiguation. In: Sidner, C.L., Schultz, T., Stone, M., Zhai, C. (eds.) HLT-NAACL, pp. 196–203. The Association for Computational Linguistics (2007)Google Scholar
  16. 16.
    Carmen Banea, R.M., Wiebe, J.: A bootstrapping method for building subjectivity lexicons for languages with scarce resources. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008), European Language Resources Association (ELRA), Marrakech, Morocco (2008), http://www.lrec-conf.org/proceedings/lrec2008/ Google Scholar
  17. 17.
    Devitt, A., Ahmad, K.: Sentiment polarity identification in financial news: A cohesion-based approach. In: Carroll, J.A., van den Bosch, A., Zaenen, A. (eds.) ACL. The Association for Computational Linguistics (2007)Google Scholar
  18. 18.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of EMNLP, pp. 79–86 (2002)Google Scholar
  19. 19.
    Andreevskaia, A., Bergler, S.: When specialists and generalists work together: Overcoming domain dependence in sentiment tagging. In: Proceedings of ACL 2008: HLT, pp. 290–298. Association for Computational Linguistics, Columbus (2008)Google Scholar
  20. 20.
    Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: Affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval 2007, pp. 70–74. Association for Computational Linguistics, Stroudsburg (2007)Google Scholar
  21. 21.
    Rentoumi, V., Giannakopoulos, G., Karkaletsis, V., Vouros, G.A.: Sentiment analysis of figurative language using a word sense disambiguation approach. In: Proceedings of the International Conference RANLP 2009, pp. 370–375. Association for Computational Linguistics, Borovets (2009)Google Scholar
  22. 22.
    Klenner, M., Petrakis, S., Fahrni, A.: Robust compositional polarity classification. In: Proceedings of the International Conference RANLP 2009, pp. 180–184. Association for Computational Linguistics, Borovets (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Georgios Petasis
    • 1
    • 2
  • Dimitrios Spiliotopoulos
    • 1
    • 3
  • Nikos Tsirakis
    • 4
  • Panayiotis Tsantilas
    • 4
  1. 1.Intellitech Digital Technologies PCGreece
  2. 2.Software and Knowledge Engineering Laboratory, Institute of Informatics and TelecommunicationsNational Centre for Scientific Research (N.C.S.R.) “Demokritos”AthensGreece
  3. 3.Athens Technology CentreAthensGreece
  4. 4.Palo Ltd.Greece

Personalised recommendations