Advertisement

Solving the Quorumcast Routing Problem as a Mixed Integer Program

  • Quoc Trung Bui
  • Quang Dung Pham
  • Yves Deville
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8451)

Abstract

The quorumcast routing problem is a generalization of multicasting which arises in many distributed applications. It consists of finding a minimum cost tree that spans the source node and at least q out of m specified nodes on a given undirected weighted graph. In this paper, we solve this problem as a mixed integer program. The experimental results show that our four approaches outperform the state of the art. A sensitivity analysis is also performed on values of q and m.

Keywords

Undirected Graph Steiner Tree Constraint Programming Linear Programming Relaxation Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River (1993)Google Scholar
  2. 2.
    Cordeau, J.-F., Costa, A.M., Laporte, G.: Steiner tree problems with profits. INFOR 44, 99–115 (2006)MathSciNetGoogle Scholar
  3. 3.
    Andersen, K.A., Jrnsten, K., Lind, M.: On bicriterion minimal spanning trees: An approximation. Computers and amp; Operations Research 23(12), 1171–1182 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)Google Scholar
  5. 5.
    Cheung, S.Y., Kumar, A.: Efficient quorumcast routing algorithms. In: Proceedings IEEE INFOCOM 1994, Networking For Global Communications, vol. 2, pp. 840–847 (June 1994)Google Scholar
  6. 6.
    Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal k-cardinality trees fast. J. Exp. Algorithmics 14, 5:2.5–5:2.23(2010)Google Scholar
  7. 7.
    Chopra, S., Tsai, C.Y.: Polyhedral approaches for the steiner tree problem on graphs. In: Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, vol. 11, pp. 175–202. Kluwer Academic Publishers (2001)Google Scholar
  8. 8.
    Comet. Comet user manual, dynadec (2011), http://dynadec.com/
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  10. 10.
    Requejo, A.C.C., Agra, A., Santos, E.: Formulations for the weightconstrained minimum spanning tree problem. In: AIP Conf. Proc. vol. 1281, pp. 2166–2169 (2010)Google Scholar
  11. 11.
    Drexl, M., Irnich, S.: Solving elementary shortest-path problems as mixed-integer programs. OR Spectrum, pp. 1–16 (2012)Google Scholar
  12. 12.
    Du, B., Gu, J., Tsang, D.H.K., Wang, W.: Quorumcast routing by multispace search. In: Global Telecommunications Conference on Communications: The Key to Global Prosperity, GLOBECOM 1996, vol. 2, pp. 1069–1073 (November 1996)Google Scholar
  13. 13.
    Fujie, T.: The maximum-leaf spanning tree problem: Formulations and facets. Networks 43(4), 212–223 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  15. 15.
    Goemans, M.X., Myung, Y.-S.: A catalog of steiner tree formulations. Networks 23(1), 19–28 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S.T. Henn.: Weight-Constrained Minimum Spanning Tree Problem. PhD thesis, University of Kaiserslautern (2007)Google Scholar
  17. 17.
    Ibrahim, M.S., Maculan, N., Minoux, M.: A strong flow-based formulation for the shortest path problem in digraphs with negative cycles. International Transactions in Operational Research 16(3), 361–369 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wayne, K.: Union-find algorithms. (2008), http://www.cs.princeton.edu/r~s/AlgsDS07/01UnionFind.pdf
  19. 19.
    Koch, T., Martin, A.: Solving steiner tree problems in graphs to optimality. Networks 32, 207–232 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on steiner tree problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, Berlin (2000)Google Scholar
  21. 21.
    Kulkarni, R.V., Bhave, P.R.: Integer programming formulations of vehicle routing problems. European Journal of Operational Research 20(1), 58–67 (1985)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ljubi, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming 105, 427–449 (2006)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Ljubi, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. In: Mathematical Progamming. Series B (2006)Google Scholar
  24. 24.
    Low, C.P.: A fast search algorithm for the quorumcast routing problem. Inf. Process. Lett. 66(2), 87–92 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lucena, A., Beasley, J.E.: A branch and cut algorithm for the steiner problem in graphs. Networks 31, 39–59 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lucena, A., Maculan, N., Simonetti, L.: Reformulations and solution algorithms for the maximum leaf spanning tree problem. Computational Management Science 7, 289–311 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Monma, C.L., Ball, M.O., Magnanti, T.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, ch. 9, pp. 503–615. Elsevier (1995)Google Scholar
  28. 28.
    Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Pham, Q., Deville, Y.: Solving the quorumcast routing problem by constraint programming. Constraints 17, 409–431 (2012)CrossRefMathSciNetGoogle Scholar
  30. 30.
    G. Skorobohatyj.: Finding a minimum cut between all pairs of nodes in an undirected graph (2008), http://elib.zib.de/pub/Packages/mathprog/mincut/all-pairs/index.html
  31. 31.
    Uchoa, E.: Reduction tests for the prize-collecting steiner problem. Operations Research Letters 34(4), 437–444 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Wang, B., Hou, J.C.: An efficient QoS routing algorithm for quorumcast communication. Computer Networks Journal 44(1), 43–61 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Quoc Trung Bui
    • 1
  • Quang Dung Pham
    • 2
  • Yves Deville
    • 1
  1. 1.ICTEAMUniversité catholique de LouvainBelgium
  2. 2.SoICTHanoi University of Science and TechnologyVietnam

Personalised recommendations