Advertisement

SAT and Hybrid Models of the Car Sequencing Problem

  • Christian Artigues
  • Emmanuel Hebrard
  • Valentin Mayer-Eichberger
  • Mohamed Siala
  • Toby Walsh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8451)

Abstract

We compare both pure SAT and hybrid CP/SAT models for solving car sequencing problems, and close 13 out of the 23 large open instances in CSPLib. Three features of these models are crucial to improving the state of the art in this domain. For quickly finding solutions, advanced CP heuristics are important and good propagation (either by a specialized propagator or by a sophisticated SAT encoding that simulates one) is necessary. For proving infeasibility, clause learning in the SAT solver is critical. Our models contain a number of novelties. In our hybrid models, for example, we develop a linear time mechanism for explaining failure and pruning the AtMostSeqCard constraint. In our SAT models, we give powerful encodings for the same constraint. Our research demonstrates the strength and complementarity of SAT and hybrid methods for solving difficult sequencing problems.

Keywords

Constraint Programming Conjunctive Normal Form Cardinality Constraint Conjunctive Normal Form Formula Constraint Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: An update. In: Proceedings of ICCAD, pp. 450–457 (2002)Google Scholar
  2. 2.
    Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)Google Scholar
  4. 4.
    Biere., A., Heule., M., van Maaren., H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  5. 5.
    Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cambazard, H.: Résolution de problmes combinatoires par des approches fondées sur la notion dexplication. PhD thesis, Ecole des mines de Nantes (2006)Google Scholar
  7. 7.
    Cambazard, H., Jussien, N.: Identifying and exploiting problem structures using explanation-based constraint programming. Constraints 11(4), 295–313 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dixon, H.: Automating Pseudo-Boolean Inference within a DPLL Framework. PhD thesis, University of Oregon (2004)Google Scholar
  10. 10.
    Dixon, H.E., Ginsberg, M.L.: Inference Methods for a Pseudo-Boolean Satisability Solver. In: Proceedings of AAAI, pp. 635–640 (2002)Google Scholar
  11. 11.
    Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)zbMATHGoogle Scholar
  12. 12.
    Feydy, T., Schutt, A., Stuckey, P.: Semantic Learning for Lazy Clause Generation. In: TRICS workshop, held alongside CP (2013)Google Scholar
  13. 13.
    Gent, I.P.: Arc Consistency in SAT. In: Proceedings of ECAI, pp. 121–125 (2002)Google Scholar
  14. 14.
    Gent, I.P., Walsh, T.: CSPlib: A benchmark library for constraints (1999)Google Scholar
  15. 15.
    G. Katsirelos.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)Google Scholar
  16. 16.
    Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Proceedings of AAAI, pp. 390–396 (2005)Google Scholar
  17. 17.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535 (2001)Google Scholar
  18. 18.
    Quimper, C.-G., Golynski, A., López-Ortiz, A., Beek, P.V.: An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint. Constraints 10(2), 115–135 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proceedings of AAAI, vol. 2, pp. 209–215 (1996)Google Scholar
  20. 20.
    Régin, J.-C., Puget, J.-F.: A Filtering Algorithm for Global Sequencing Constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  22. 22.
    Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic CSP. In: Proceeding of ICTAI, pp. 48–55 (1993)Google Scholar
  23. 23.
    Siala, M., Hebrard, E., Huguet, M.-J.: An optimal arc consistency algorithm for a particular case of sequence constraint. Constraints 19(1), 30–56 (2014)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Smith, B.M.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering (1996)Google Scholar
  26. 26.
    Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. European Journal of Operational Research 191, 912–927 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Algorithms for Combinations of Among Constraints. Constraints 14(2), 273–292 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Artigues
    • 1
    • 2
  • Emmanuel Hebrard
    • 1
    • 2
  • Valentin Mayer-Eichberger
    • 3
    • 4
  • Mohamed Siala
    • 1
    • 5
  • Toby Walsh
    • 3
    • 4
  1. 1.CNRS, LAASToulouseFrance
  2. 2.Univ de Toulouse, LAASToulouseFrance
  3. 3.NICTAAustralia
  4. 4.University of New South WalesAustralia
  5. 5.Univ de Toulouse, INSA, LAASToulouseFrance

Personalised recommendations